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Abstract

Electronic voting is an application of cryptography. Voting schemes that
provide receipt-freeness prevents voters from proving their cast vote, and hence
thwart vote-buying and coercion. We revise the contemporary state of research
in electronic voting and propose an efficient receipt-free voting scheme. Similar
to the scheme of Hirt and Sako, it assumes the existence of untappable com-
munication channels between the voter and the authorities. Compared to the
receipt-free scheme of Hirt and Sako, the scheme described in this paper real-
izes an improvement of the total number of bits sent through the untappable
channel by a factor L (number of possible votes/choices) while achieving the
same security properties. We also discuss an implementation of the untappable
channel.
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1 Introduction

Through the centuries, different voting technologies have done their best. Stones
and pot shards dropped in Greek vases led to paper ballots dropped in sealed
boxes. Nowadays, new technologies are developed to automate the voting pro-
cess. The automation should preserve the security of the traditional elections
(especially the privacy of the votes). Mechanical voting booths and punch cards
are already designed to replace paper ballots for faster counting.

Electronic online voting over the Internet would be much more profitable.
Many voters would appreciate the possibility of voting from anywhere. Conve-
nience of the voting will result in increasing the number of participating voters.
Fast, cheap and convenient voting process could have great impact on the con-
temporary democratic societies. For instance, elections could be held more
often in order to allow the citizens to express their will at any time.

Electronic voting has been intensively studied for over the last twenty years.
Up to now, many electronic voting schemes have been proposed, and both the
security as well as the effectiveness have been improved. However, no complete
solution has been found in either theoretical nor practical domains.

The aim of our work has been to revise the contemporary state of research
in the field of electronic voting, and to introduce our own solution enhancing
effectiveness.

The most efficient voting protocols could be categorized by their approaches
into two main types: schemes using blind signatures and schemes using homo-
morphic encryption. The suitability of each of these types varies with the
conditions under which it is to be applied.

In the schemes using blind signatures, the voter firstly obtains a token –
a blindly signed message unknown to anyone except himself. Next, the voter
sends his token together with his vote anonymously. These schemes require
voter’s participation in more rounds.

In the schemes using homomorphic encryption the voter cooperates with
the authorities in order to construct an encryption of his vote. Due to the
homomorphic property, an encryption of the sum of the votes is obtained by
multiplying the encrypted votes of all voters. Finally, the result of the elec-
tion is computed from the sum of the votes which is jointly decrypted by the
authorities.

A voting scheme must ensure not only that the voter can keep his vote
private, but also that he must keep it private. In other words, the voter should
not be able to prove to the third party that he has cast a particular vote. He
must not be able to construct a receipt proving the content of his vote. This
property is referred to as receipt-freeness.

Only a few schemes guaranteeing receipt-freeness have been proposed. Known
receipt-free scheme using blind signatures [Oka97] assumes the existence of a
special anonymous untappable channel. Achieving the communication that is
both secure and anonymous would, however, be extremely difficult. As for
the schemes using homomorphic encryption, some efficient receipt-free schemes
have already been proposed. The most practicable one seems to be that of Hirt
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and Sako from [HS00].
The goal of our work was to design a scheme more effective than the above

mentioned scheme of Hirt and Sako and achieving the same or higher security
properties.

The problem of electronic voting is formulated in the section 2. The next
section 3 briefly introduces basic approaches to the problem. Necessary crypto-
graphic primitives and interactive proofs can be found in the section 4. Overview
of the existing voting schemes, as well as a description of the chosen schemes
can be found in the section 5. Our proposed scheme is based on the work of
Hirt and Sako (section 5.4) and is discussed in the last section 7. The concept
of deniable encryption and the implementation of the untappable channel can
be found in the section 6.
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2 Formulation of the problem

2.1 Traditional Elections

Traditional elections have some important features, which the electronic
voting, in order to be useable, should have also. We briefly sketch the most
important ones of them.

Voting committee takes care of voters: It allows only eligible voters to vote,
and it ensures that every voter votes at most once. After the elections, voting
committee counts the votes and publishes the result. The votes remain secret
– no one is able to say how John Smith has voted (We know that he has voted
– we have seen him, and his name in the list of eligible voters is marked.)
Of course, when ninety–nine percent of voters say no, everybody knows that
John Smith said with high probability no. We simply can do nothing with the
deduction from the result of election. Even if John Smith tells his vote to Mary
Carpenter, she will not believe him – he can easily lie. On the other hand, John
Smith cannot be absolutely sure that his vote was really counted. He can just
believe it was. Everybody has to believe that the voting committee is honest
and it would not disrupt the elections.

2.2 Basic Model

Participants in our schemes will be voters and authorities. We see both of
them as probabilistic Turing machines, which can perform probabilistic polynomial-
time computation. Participants can communicate with each other through the
public channel. We will denote the number of voters M and the number of
authorities N . M can be much higher than N .

2.2.1 Voters

In general, voters are not willing to bother with complicated and time-
spending voting process. Therefore voter’s actions and computations during
the electronic voting should be kept at minimum, realizing vote-and-go concept.
Voter can abstain from voting if he wishes to – he need not participate in the
voting, or he can stop his voting any time before it is finished (of course, in this
case his vote is not counted). Further, we suppose that he can secretly store
some amount of data in a secure place inaccessible to anyone except for himself.

2.2.2 Authorities

Authorities manage the elections. They have large computing power and
they can store large amount of data in secret. Authorities can also act as voters.
Maximum number of the faulty authorities will be denoted as t. We assume
that the rest N − t from N authorities will do their prescribed work correctly
and honestly.

2.2.3 Votes

The structure of votes depends on the type of elections. More precisely,
it depends on the question that is put forward to voters in the election and
possible answers.
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We will distinguish between the following types of election:

• yes/no voting. Voter’s answer is yes or no. Vote is a one bit: 1 for yes
and 0 for no.

• 1-out-of-L voting. Here, voter has L possibilities and he chooses one of
them. Vote is a number in the range 1 . . . L.

• K-out-of-L voting. Voter selects K different elements from the set of L
possibilities. The order of the selected elements is not important. Vote is
a K-tuple (v1 · · · vK).

• K-out-of-L ordered voting. Voter puts into order K different elements
from the set of L possibilities. Vote is an ordered K-tuple (v1 · · · vK).

• 1-L-K voting. Voter picks out one of the L sets of possibilities, and from
the selected set he chooses K elements. Vote is a K+1-tuple (i, a1 · · · aK);
a1 · · · aK are elements of the ith set.

• Structured voting. There are n levels of possibilities. Voter moves from
the first level to the last one. At the ith level he can select at most
ki possibilities from the subset Si of all possibilities in the ith level.
Si, ki depend on his choices in the previous levels. Vote is a tuple
(v11, · · · , v1k1 , · · · , vi1, · · · , viki

, · · · , vnkn), where {vi1, · · · , viki
} ⊂ Si.

• Write-in voting. Voter formulates his own answer and writes it down.
Vote is a string with specified maximum length.

For example, possible reply to the question “Do you agree with ...” or “Do
you wish that ...” can be only “Yes” or “No” (yes/no voting). An example of 1-
out-of-L voting is choosing a leader from a list of L candidates (e.g. presidential
elections).

Further, imagine the election of council members, in which the voter selects
K from L candidates. Those candidates that were selected the most times
will become council members. In this case, the order of the voter’s K selected
candidates is not important and therefore this type of voting belongs to the K-
out-of-L voting. Another way how the votes in this election could be evaluated
is to take into account the order of the voter’s candidates: the candidate who
is marked by the voter as first will get the most points, the candidate marked
as the last (Kth) the least points. Those candidates with the largest numbers
of points will become the members of the council. This type of election is a
typical example of K-out-of-L ordered voting.

Somewhat special seems to be parliamentary election, when the voter elects
his representatives, but they have to be candidates of the same political party.
This is precisely 1-L-K-voting, where L is a number of political parties and K
a number of the selected candidates. Again, the selected set may be ordered or
unordered.

Structured voting is a generalization of 1-L-K voting, and can be seen as
filling in the form, where the possibilities for the next part depends on the
previous choices.
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Notice that 1-L-K voting is structured voting with two levels: first contains
L possibilities, k1 = 1 and k2 = K. In fact, voter’s choice in all types of voting
is one element from the finite set of possibilities. For example, in K-out-of-L
voting voter selects one K-tuple from the set of all K-tuples. Therefore, every
type of voting can be seen as 1-out-of-L voting for some L. However, L could
rise too high and this approach can turn to be impractical.

Moreover, according to the equality of the votes we define two types of
voting:

• equal-voting. Each voter can vote only once and his vote is counted once.

• weighted-voting. The vote of the voter Vi is counted wi times.

Notice that the weighted-voting cannot be realized simply by repeating vot-
ing procedure wi times, as it gives the voter the opportunity to vote every time
differently.

In the equal-voting the power is distributed equally among the voters, for
instance in parliamentary elections. In weighted-voting (e.g. at the general
meeting of the stockholders) the power to make decision is not equally dis-
tributed, and the voters are more or less privileged.

A structure containing the vote is called a ballot. It can be easy, difficult or
impossible to extract the vote from the ballot, depending on the scheme.

2.2.4 Trust

If we have one absolutely reliable authority, about which we are sure it will
make the expected actions and it will do nothing else (e.g. release some secret
information, cast the ballots of voters abstaining from voting, or abuse its role
in any other manner), we do not need more authorities. But the situation is
different in the real world. We find it risky to put the whole responsibility for
the elections to the one authority. Therefore we share the ability to lead the
elections between more authorities in such a way that malicious behavior of
some of them will not jeopardize the elections.

Each participant (voter as well as authority) has to believe that at least
N − t authorities are honest. This trust can be a sort of “general suspicion”,
when (from the participant’s point of view) every authority is dishonest with
the same probability, but the participant believes that the actual number of the
dishonest authorities will not exceed t. Authorities do not trust voters at all.

2.2.5 Communication

In this section, various types of communication channels used in electronic
voting schemes are introduced.

Any participant can send a message to any other participant through the
public channel. Bulletin board is publicly readable. Any participant can
write in (only in his own section), but nobody can delete or change anything in
the bulletin board. Bulletin board can be considered as public channels with
memory.
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Untappable channel is a secret channel between two participants. Commu-
nication through untappable channel is physically secure: no one else can see
or change the sent message, and even the participant cannot later demonstrate
to anyone what was sent. The existence of the untappable channel is assumed
in some schemes between the voter and the authority. For implementation of
the untappable channel see section 6.

Untraceable anonymous channel , or anonymous channel for short, is a
channel guaranteeing the anonymity of the sender. Recipient of the message
that has been sent through the anonymous channel does not know the identity of
the sender. No one is able to trace the message back to the sender. Realization
of this channel will be discussed later in section 4.11. Note that the anonymous
channel needs not to be untappable (e.g. the messages arriving to the receiver
can be tapped).

Untappable anonymous channel is a channel guaranteeing both the anony-
mity of the sender and the physical security of the transmission: the sender
/ receiver cannot later demonstrate what was sent / received. No one can
intercept the transmission of the message. Implementation of the untappable
anonymous channel is hard in practice.

2.3 Electronic Voting Scheme

The authorities and the voters have to follow electronic voting scheme. The
scheme prescribes voter’s and authority’s actions and computations during the
voting process. We assume that at least N − t from N authorities will not
deflect from the expected behavior. The scheme should be resistant to malicious
actions of the other t authorities. Voters can act on their own will. The aim
is to design the scheme in such a way that malicious or improper behavior of
the voter will be detected, and invalid or double-votes will not be taken into
account.

2.4 Definition

Electronic voting scheme consists of three main stages: initialization stage,
voting stage, and counting stage. The stage can consists of more phases.

Initialization stage. At this stage, authorities set up the system. They
announce the elections, formulate the question and possibilities for an answer,
create a list of eligible voters, and so on. They generate their public and secret
keys, and publish the public values.

Voting stage. Voters are casting their votes. The voter communicates
with authorities through the channels he can use, forming a ballot containing
his vote. Finally he sends his ballot to its destination.

Counting stage. Authorities use their public and secret information to
open the ballots and count the votes. They publish the result of elections.

2.5 Requirements

In order to be usable in practice, electronic voting scheme has to satisfy
some requirements.
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Eligibility. Only eligible voters can cast the votes. Every voter can cast
only one vote.

Privacy. No coalition of participants (of reasonable composition) not con-
taining voter himself can gain any information about the voter’s vote. By
reasonable composition we mean coalition of at most t authorities and any
number of voters. We say that information-theoretic privacy is achieved when
the ballots of the voters are indistinguishable independent of any cryptographic
assumption; otherwise we say that computational privacy is achieved.

Individual verifiability. Each eligible voter can verify that his vote was
really counted.

Universal verifiability. Any participant or passive observer can check
that the election is fair: the published final tally is really the sum of the votes.

Fairness. No participant can gain any knowledge about the (partial) tally
before the counting stage (the knowledge of the partial tally could affect the
intentions of the voters who has not yet voted).

Robustness. Faulty behavior of any reasonably sized coalition of partici-
pants can be tolerated. No coalition of voters can disrupt the election and any
cheating voter will be detected.

Receipt-freeness, incoercibility. We say that the scheme is incoercible
if the voter cannot convince any observer how he has voted. This requirement
prevents vote-buying and coercion. Before the election, someone can bribe or
coerce the voter to vote in a particular way. The coercer can order the voter
how he should behave during the voting process (e.g. generates for him random
bits). During the election, the coercer can observe the public communication
between the voter and the authorities. After the election, he will want to see a
proof that the voter really voted this way. In the scheme achieving privacy, the
coercer alone or with reasonable coalition of participants cannot open the voter’s
vote. Thus the coercer will force the voter to show him his secret information.
With it, he is capable of opening the ballot and seeing the vote. Incoercible
scheme provides the voter with the ability to modify his secrets and to open his
ballot in any desired way. Thus the voter can vote on his own will and he can
feed the coercer with a false proof.
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3 Various Approaches

We give here an informal overview of the main ideas commonly used in the
voting schemes. The sketched approaches do not deal with all possible problems
and occasions that sometimes occur. They are just ideas the voting schemes
are based upon, and some schemes might use them in various ways.

The most “difficult” property of the voting scheme seems to be privacy. If
the requirement of the privacy is omitted, it turns out not to be hard to design a
voting scheme that achieves the remaining properties (eligibility, verifiability).
(Observe that without the privacy we cannot talk about the receipt-freeness).
Just consider the voting scheme in which each eligible voter writes his vote into
his own section on the bulletin board, and anyone can read it and count the
votes.

Up to now, only a few approaches to achieve privacy have been invented.
Privacy means that the link between the voter and his vote is disposed or
inaccessible to everyone (including authority), even if all of the public commu-
nication is monitored. This can be accomplished in three ways:

• It is easy to see the vote, but it is impossible to trace it back to the voter.

• It is impossible or computationally infeasible to see the actual vote, but
it is easy to see the identity of the voter.

• Both seeing the actual vote and obtaining the identity of the voter is
impossible or computationally infeasible.

Schemes of the first and the third type have to use some special kind of
channel for casting the votes (usually untraceable anonymous channel). In the
first approach, the actual votes are published and anybody can count them,
but nobody knows who sent which vote. However, a special care is required
to achieve eligibility, to ensure that the voter cannot cast more votes and to
prevent improper voters from voting. On the other hand, in the schemes of the
second type there is a problem of the votes counting – the eligibility is for free.
Besides, anybody can see which voters have voted and which have not.

3.1 Schemes Based on Anonymous Channel

Voting stage is a composition of the registration phase and the voting phase.
Roughly speaking, the voter obtains a token in the registration phase, which
gives him the right to vote in the voting phase.

The voter is not able to create the token by himself, only during the inter-
activity with the authority. The authority helps the eligible voter to construct
the token only once, so the voter could obtain at most one token. The authority
has no idea how the voter’s token looks like. Moreover, the validity of the token
is verifiable to anyone. This concept is realized via blind signatures (described
in the section 4.7).

In the voting phase, the voter sends a ballot containing the token and his
vote through the anonymous channel to the authority. The authority will not
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accept the ballot with invalid token or with the token that has already been
used. This ensures that only eligible voters can vote (only eligible voters has
been allowed to construct a token), and that they can vote at most once (they
can obtain at most one token). As no one (even the authority) can make any
connection between the voter and the token or trace the casted ballot back to
the voter, no one can deduce anything about how the voter voted (of course,
except for the unavoidable deduction from the result of the election). Hence,
the privacy is achieved.

In general, token may consist of whatever you want: hidden voter’s iden-
tity (a hash value for instance), random numbers, encrypted vote, voting tag
(unique for each election), etc. The only restriction is that it should be hard
or impossible to extract the voter’s identity from the token and that each voter
has to have different token. Structure of the token is specified in the voting
scheme.

The token is sometimes called a pseudonym. The term “pseudonym” em-
phasizes the fact that the voter’s identity and the token (pseudonym) cannot
be linked.

This approach can be found in the schemes of [Cha88, PIK93, Boy, FOO92,
Rad95, JL97, JLY98, Oka97].

3.2 Schemes Based on Homomorphic Encryption

In this kind of schemes, the voter sends encrypted vote through the public
channel (usually to the bulletin board). The vote can be decrypted by any set
of at least t + 1 authorities, and any set of t authorities can tell nothing about
the vote. This can be accomplished in two ways:

• threshold public-key cryptosystem is used for encrypting the votes (A key
to decrypt the vote is shared between any set of t + 1 authorities, for
instance ElGamal cryptosystem, see section 4.10)

• Each authority has its own instance of the cryptosystem. The voter shares
the secret (his vote) among the N authorities using (t+1, N) secret sharing
scheme (for instance Shamir’s scheme from the section 4.2). The voter
sends to the each authority its encrypted share.

This will prevent small coalition of malicious authorities to abuse their role
and to violate voter’s privacy. Problem arises only in counting the votes.

Encryption method used for encrypting votes is homomorphic: multiplica-
tion of the encrypted votes is an encrypted sum of the votes (for more details
on homomorphic encryption see section 4.9).

In the first case, encrypted votes are multiplied and authorities decrypt only
the sum of the votes. In the second case, each authority multiplies its encrypted
shares, decrypts the sum of its shares, and the final sum of the votes can be
computed by anyone from the t + 1 partial sums.

In a yes/no voting, where 1 expresses yes-vote and 0 expresses no-vote,
the sum of the votes is the number of yes-votes. As the whole number of
votes is known, the number of no-votes is easily computed. For other types of
voting we have to think of some more sophisticated encoding of the possible
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votes. For instance in an 1-out-of-L voting we can encode the ith possibility
(1 ≤ i ≤ L) as M i−1 (M is the number of eligible voters). Sum of the votes
will be S1 = a1 + a2M + a3M

2 + · · · + aLML−1, where ai is the number of
times the ith possibility was sent. Coefficients ai can be iteratively computed
as ai = Si mod M , Si+1 = (Si−ai)/M , where S1 is the sum of votes (ai ≤M).

The authorities should be able to distinguish between the valid and the
invalid encrypted votes (for example, to count his vote twice, the voter can
encrypt 2 instead of 1). Invalid votes should be rejected. Usually, the voter
is required to prove that his vote is of the correct form (either 1 or 0) with-
out disclosing any other information about his vote (the proof should be zero
knowledge).

Usually, schemes based on homomorphic encryption are not receipt-free: let
the voter’s favorite vote be V , and encryption of the V be C. Voter sends C to
the bulletin board, so C is publicly known. Further, suppose that the coercer’s
favorite vote is W , and that W 6= V . Coercer can later force the voter to reveal
how the W is encrypted to C. Of course, C is the encryption of V , and the only
chance for the voter is to show the coercer that C looks like the encryption of
W . This is possible only if the deniable encryption is used. However, a deniable
encryption with homomorphic property and suitable to threshold cryptographic
techniques is not yet known. This topic will be discussed further in the section
6.

Homomorphic property of encryption method is exploited in these schemes:
[Ben87, BY86, Ive91, SK94, CGS97, Sch99, HS00, LK00, FPS00].

3.3 Schemes Based on Mixing the Votes

To be simple, consider 1-out-of-L voting. The authorities take the list of
the L possible votes (original list), and mix it to produce the final list. The
operation of mixing is performed as follows (see also figure 1):

The first authority takes the list of L possible votes (original list), per-
mutes it in a random order, and re-encrypts each possible vote. It unveils the
permutation only to the voter and no one else. To increase the security, the
authority sends the permutation to the voter through untappable channel. The
created list containing re-encrypted and permuted possible votes is published
and handled to the next authority. Seeing just the original and created list, no
one is able to say anything about the permutation mapping each item from the
original list to its re-encryption in the created list, unless this permutation is
revealed to him by the authority.

The next authority takes the handled list, and shuffles it in the same way
as the first authority shuffled the original list: it permutes the list in a random
order, re-encrypts each item, unveils the permutation to the voter through the
untappable channel and publishes the produced list.

Successively, each authority takes the list handled by the previous authority,
shuffles it in the manner described above, and handles the produced list to the
next authority. The list produced by the last authority is called the final list.
Only the voter can keep track of the permutations that have been sequentially
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Figure 1: Mixing the votes

applied to the original list by the authorities. Therefore, only he knows the
permutation mapping each item from the original list to its re-encryption in
the final list. The voter just selects one item from the final list as his vote.

In the case that the used encryption is homomorphic, the voter writes his
selected item to the bulletin board. The votes are counted as in the schemes
based on homomorphic property: all encrypted votes are multiplied, and the
authorities cooperate to decrypt the sum of the votes.

The coercer cannot tap on the secure channel, so the voter can adjust the
permutations he received from the authorities as it comes useful. Therefore, the
voter is not able to prove how he has voted and these schemes are receipt-free.

Mixing the possible votes and sending done permutations secretly to the
voter appear in the schemes of [SK95, HS00].
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4 Cryptographic Primitives

4.1 Notation

N number of authorities
A1, A2, . . . , AN N authorities
t maximum number of malicious and dishonest authorities
A any set of t + 1 authorities
M number of eligible voters
m number of voters participating in the voting; m ≤M
V1, V2, . . . , VM M voters
v1, v2, . . . , vM intentions (votes) of the voters
Zp field of positive integers modulo p, where p is prime number
Zn set of integers modulo n, i.e. {0, 1, . . . , n− 1}
Z∗

n set of integers from Zn relatively prime to n
a|b an integer a is a divisor of an integer b
gcd(a, b) greatest common divisor of the integers a, b
a‖b concatenation of the strings a, b
a⊕ b bitwise exclusive or
x ∈R X x is a random element of the set X (uniformly distributed)
X ⊂R Y X is a random subset of the set Y (uniformly distributed)
x

?= y check whether x = y

4.2 Secret Sharing Scheme

Purpose of secret sharing scheme is to share a secret among N authorities
in such a way that only some predefined coalitions of authorities can later
reconstruct the secret. Other coalitions of authorities should get no knowledge
about the secret. We introduce Shamir’s (t + 1, N) secret sharing scheme from
[Sha79] that allows any coalition of t + 1 from N authorities to get the secret.
Any set of at most t authorities knows nothing about the secret.

Let the set of possible secrets forms a field F (for instance, F could be set
of real numbers, or Zp). F should have at least N + 1 distinct elements – we
will denote them 0, 1, 2, . . . N .

Distribution of the shares. A secret s ∈ F is distributed among the N
authorities; each authority gets its share sj ∈ F . The idea behind is simple:
Choose a random polynomial f of degree t over the field F satisfying f(0) = s.
Give the authority Aj its share sj = f(j).

Reconstruction of the secret. Set of t + 1 authorities A gains the se-
cret s by reconstructing the polynomial f (using Lagrange interpolation) and
computing s = f(0):

s = f(0) =
∑
j∈A

f(j)λj,A =
∑
j∈A

sjλj,A

λj,A =
∏

l∈A−{j}

l

l − j

14



Information that t or less authorities have about the polynomial f reveals
nothing about the value f(0) = s. Whatever value for f(0) = r they choose,
using their shares they can compute possible polynomial g satisfying g(0) = r.

4.3 Publicly Verifiable Secret Sharing

Publicly verifiable secret sharing scheme is a secret sharing scheme allowing
verifying that the dealer has distributed valid shares (any set of t+1 authorities
will obtain the same secret) and allowing catching the dishonest authority in
forging its share. The following publicly verifiable secret sharing comes from
[Sch99].

Initialization. The group Zp and the generators G, g are selected. The
authority Aj chooses its secret key zj and publishes its public key hj = gzj .
The dealer wants to share a secret gs to the authorities1.

Distribution of the shares. The dealer picks a random polynomial of
degree t over the Zp:

p(x) =
t∑

k=0

αkx
k

where α0 = s and α1, . . . , αt ∈ Zp. The polynomial is kept secret and the
commitments Ck = Gαk , 0 ≤ k ≤ t as well as the encrypted shares Hj = h

p(j)
j ,

j = 1, 2, . . . N are published. Moreover, the dealer shows that the encrypted
shares are consistent: Let Xj =

∏t
k=0 Cjk

k = G
∑t

k=0
αkjk

= Gp(j), the dealer
proves that

logG Xj = loghj
Hj

using the non-interactive proof from the section 4.12.2.

Reconstruction of the secret. The authority Aj decrypts its share Sj =
gp(j) by computing Sj = H

1/zj

j . Aj also proves that logG hj = − logHj
Sj (again

the proof from the section 4.12.2). Further, suppose that t + 1 authorities Aj ,
j ∈ A produce the correct values for Sj , j ∈ A. The secret gs is reconstructed
by Lagrange interpolation∏

j∈A

S
λj,A

j =
∏
j∈A

gp(j)λj,A = g
∑

j∈A
p(j)λj,A = gp(0) = gs

where λj,A =
∏

l∈A−{j}
l

l−j is a Lagrange coefficient.

4.4 RSA Cryptosystem

Key Generation. Alice creates her public key and a corresponding private
key. Alice should do the following:

1. Generate two large random distinct primes p, q, each roughly the same
size.

1If the discrete logarithm of the secret σ ∈ Zp to the base g is not known (i.e. the value
d ∈ Zp such that gd = σ), the dealer chooses s randomly and publishes U = σgs. After the
gs is reconstructed, the secret σ is obtained as σ = Ug−s.
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2. Compute n = pq, φ = (p− 1)(q − 1)

3. Select an integer e, 1 < e < φ such that gcd(e, φ) = 1.

4. Compute the unique integer d, 1 < d < φ such that ed ≡ 1 mod φ

5. The public key is (n, e), the private key is d.

Encryption. To encrypt an integer m, 0 ≤ m < n, Bob should compute
c = me mod n.

Decryption. Alice recovers the plaintext m from the ciphertext c as m =
cd mod n.

4.5 Quadratic Residuosity Problem

Let n be an integer. Any y ∈ Z∗
n which can be written as y = x2 mod n

for some x ∈ Zn is called a quadratic residue modulo n. The set of quadratic
residues modulo n will be denoted as Qn.

If n = p is a prime number, the Legendre symbol is defined as

(
a

p

)
=


0, if p|a;
1, if a ∈ Qp;
−1, if a /∈ Qp.

If n is composite and n = pe1
1 pe2

2 · · · p
ek
k is its factorization, the Jacobi symbol

is defined as (
a

n

)
=
(

a

p1

)e1

· · ·
(

a

pk

)ek

There exists efficient algorithm for computing
(

a
n

)
for any a, n (the factor-

ization of the n does not need to be known) – see for instance [MvOV96].
Obviously, if a is a quadratic residue, then

(
a
n

)
= 1. However, from

(
a
n

)
= 1

does not follow that a is a quadratic residue. Such a which is not a quadratic
residue but satisfies

(
a
n

)
= 1 is called a pseudo-square. The set of pseudo-squares

is denoted by Q̃n.
If n = pq is a product of two distinct primes, then |Qn| = |Q̃n| = (p−1)(q−1)

4 .
Quadratic residuosity problem is the following: given an odd composite

integer n and a ∈ Z∗
n such that

(
a
n

)
= 1, decide whether a is a quadratic residue

modulo n.
If n = p is a prime number, it is easy to decide whether a ∈ Zn is a quadratic

residue modulo p or not, since it follows directly from the definition of Legendre
symbol and the

(
a
p

)
can be efficiently computed.

If n = pe1
1 · · · p

ek
k is composite, then a is a quadratic residue modulo n if

and only if it is a quadratic residue modulo pi for all i = 1, . . . k. Thus, if
the factorization of n is known, quadratic residuosity problem can be solved
by checking whether

(
a
pi

)
= 1 for all i = 1, . . . k. On the other hand, if the

factorization of n is not known, then there is no efficient way known for solving
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quadratic residuosity problem. If n = pq the correct answer can be guessed
with the probability 1

2 . It is believed that quadratic residuosity problem is as
difficult as factoring, but no such proof has been given.

More details about quadratic residuosity problem can be found in [MvOV96].

4.6 ElGamal Cryptosystem

ElGamal public-key cryptosystem can be based on any family of groups
for which the discrete logarithm is considered intractable. Usually a subgroup
Gq of order q of Zp is used, where p, q are large primes satisfying q|p − 1.
Other practical groups can be obtained for elliptic curves over finite fields. The
discrete logarithm problem for elliptic curves is considered to be harder. We
present construction in the group Zp, where p is a large prime.

Key generation. Alice creates a public key and a corresponding private
key. Alice should do the following:

1. Generate large prime p and a generator g of the multiplicative group Zp

of the integers modulo p.

2. Select random integer α, where 1 ≤ α ≤ p− 2, and compute h = gα.

3. The public key is (p, g, h), and the private key is α.

Encryption. Bob obtains Alice’s public key (p, g, h). Bob wants to encrypt
a message 0 ≤ m < p for Alice. He should do the following:

1. Select a random integer k, 0 ≤ k ≤ p− 2.

2. Compute x = gk, y = mhk.

3. Send the ciphertext c = (x, y) to Alice.

Decryption.To recover plaintext m from c = (x, y), Alice should do the
following:

1. Using the private key α, compute r = xp−1−α. (Note that r = xp−1−α =
x−α = (gk)−α = g−kα).

2. Recover m by computing m = yr mod p.

4.7 Blind Signatures

We require the signatures to be genuine (only the signer can sign messages)
and publicly verifiable (anyone can verify whether the given signature of the
message is correct).

If the signer has RSA public key (n, e) and the corresponding private key d,
he can sign a message m, m ∈ Zn as s = md mod n. Given the signature s of the
message m, anyone can verify its validity by checking whether m

?= se mod n.
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Notice that the decryption and encryption methods of the RSA cryptosystem
are used in signing the message and verifying its signature.

Suppose that a requester wants to obtain the signer’s signature of the mes-
sage m. The requester does not wish to reveal the message m to anyone,
including the signer. The signer is requested to sign a message blindly, not
knowing what he signs. 2

If the signer has RSA public (n, e) and the corresponding private key d, the
requester obtains blind signature of the message m as follows:

1. The requester blinds his message m to m′ = mre mod n, where r ∈R Zn

is random, and sends m′ to the signer.

2. The signer signs the blinded message m′ and sends its signature s′ =
m′d mod n to the requester.

3. The requester retrieves the desired signature s of the message m by com-
puting

s =
s′

r
=

m′d

r
=

mdred

r
=

mdr

r
= md (mod n)

Formally, the blind signature scheme with message space M is a 5-tuple
(η, χ, σ, δ,Γ), where

• η is a poly-time probabilistic algorithm, that constructs the signer’s public
key (pk) and its corresponding secret key (sk);

• χ is a poly-time blinding algorithm, that on input a message m ∈ M , a
public key pk and a random string r, constructs a blind message m′;

• σ is a poly-time signing algorithm, that on input a blind message m′ and
the secret key sk constructs a blind signature s′ on m′;

• δ is a poly-time retrieving algorithm, that on input a blind signature s′

and the random string r extracts a signature s on m;

• Γ is a poly-time signature-verifying algorithm that on input a message-
signature pair (m, s) and the public key pk outputs either yes or no.

For threshold blind signatures (where the secret key of the blind signature
scheme is shared among the N authorities), see [DK00], or [JL99].

2Imagine, for instance, that the voter creates his ballot m and he needs authority’s approval
and authorization of the ballot, but revealing the ballot m to the authority would compromise
his privacy.
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4.8 Bit Commitment

Suppose that Alice wants to send a bit b to Bob. She does not wish to
reveal b to Bob immediately. Bob requires that Alice cannot change her mind
afterwards and that the bit she later reveals will be the same as she thinks of
now.

Alice encrypts the bit b in some way and sends the encryption to Bob. Bob
is not able to recover b until Alice sends him the key. Encryption of b is called
a blob. In general, the bit commitment scheme is a function ξ : {0, 1}×X → Y ,
where X, Y are finite sets. An encryption of b is any value ξ(b, k), k ∈ X. Bit
commitment scheme should satisfy the following properties:
• concealing – Bob cannot determine the value b from ξ(b, k)

• binding – Alice can later open the ξ(b, k) by revealing b, k used in its
construction. She should not be able to open the blob as both a 0 and a
1.

If Alice wants to commit a string of bits, she commits every bit indepen-
dently.

Bit commitment scheme in which Alice is able to open the blob as both a 0
and a 1 is called a trapdoor bit commitment .

Bit commitment can be performed as follows:
Suppose that a large prime p, a generator g of Zp and a G ∈ Zp are known.

Discrete logarithm of G to the base g should not be known both to Alice and
to Bob (G can be chosen randomly). Bit commitment ξ : {0, 1} × Zp → Zp is

ξ(b, k) = gkGb

Let logg G = a. The blob can be opened as b by revealing k, and can be
opened as ¬b by revealing k − a if b = 0 or k + a if b = 1. If Alice does not
know a, she is not able to open the blob as ¬b.

Similarly, if Bob does not know k, he cannot determine b seeing just ξ(b, k) =
gkGb.

Trapdoor bit commitment scheme is obtained in the case that a is known
to Alice.

If the a is known to Bob and Alice opens the blob to Bob through untap-
pable channel, Bob is able to lie to the third party about the committed bit b.
Simply, he claims he has received k − a or k + a instead of k. Bit commitment
scheme allowing the verifier (Bob) to lie about the opening of the blob is called
chameleon bit commitment.

Instead of committing every bit of the string s independently, Alice can
simply commit to 0 ≤ s < p by ξ(s, k) = Gsgk. Again, the knowledge of a gives
Alice the ability to open the ξ(s, k) as any s′, k′ satisfying as + k = as′ + k′.

4.9 Homomorphic Encryption

Consider a probabilistic encryption scheme. Let P be the plaintext space
and C the ciphertext space such that P is a group under the binary operation
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⊕ and C is a group under the operation ⊗. Instance E of the probabilistic
encryption scheme is created by generating its public and private keys. Let
Er(m) denotes encryption of the message m using the random parameter(s) r
in the instance E; r is a randomness used in the process of encryption.

We say that the probabilistic encryption scheme is (⊗,⊕)-homomorphic, if
for any instance E of the encryption scheme, given c1 = Er1(m1) and c2 =
Er2(m2), there exists an r such that

c1 ⊗ c2 = Er(m1 ⊕m2)

For example, ElGamal encryption scheme is homomorphic. Here, P is a set
of integers modulo p (P = Zp), and C is a set of couples C = {(a, b)|a, b ∈ Zp}.
The operation ⊕ is multiplication modulo p. For binary operation ⊗ defined on
cipher texts lets take multiplication modulo p per components. Two plaintexts
m0,m1 are encrypted to

Ek0(m0) = (gk0 , hk0m0)

Ek1(m1) = (gk1 , hk1m1)

where k0, k1 are random.
It holds

Ek0(m0)Ek1(m1) = (gk0gk1 , hk0hk1m0m1) = (gk, hkm0m1) = Ek(m0m1)

for k = k0 + k1.
Therefore in ElGamal cryptosystem, by multiplication of ciphertexts we

gain encrypted multiplication of corresponding plaintexts.

4.10 Robust Threshold ElGamal Cryptosystem

The purpose of threshold public-key cryptosystem is to share a private key
among the authorities such that messages can be decrypted only when a sub-
stantial set of authorities cooperate. We need to change the key generation
and the decryption protocol in the ElGamal cryptosystem. Messages will be
encrypted as usual.

Key generation. The result of the key generation protocol is that each
authority Aj will possess a share sj of a secret s (a private key in the ElGamal
cryptosystem) and the public key will be made public. The authorities are
committed to their shares as the values hj = gsj are published. Furthermore,
the shares sj are such that the secret s can be reconstructed from any set of
t+1 shares. Any set of at most t shares can tell nothing about the secret s. To
achieve this, Shamir’s (t + 1, N) secret sharing scheme is used. Trusted third
party is needed to compute and distribute these shares to authorities using
untappable channel (key generation protocol without the trusted third party is
presented in [GJKR99]).

Thus, it holds

s =
∑

j∈A sjλj,A λj,A =
∏

l∈A−{j}
l

l−j
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The public key is (p, g, h), where h = gs.

Decryption. To decrypt a cipher text (x, y) = (gk, hkm) without recon-
structing the secret s, the authorities execute the following protocol:

1. Each authority Aj broadcasts wj = xsj and proves in zero-knowledge that

logg hj = logx wj

A proof from the section 4.12.2 is sufficient for this purpose; it is made
non-interactive using the technique from the section 4.12.1.

2. Let A is any set of t+1 authorities who passed the zero-knowledge proof.
The plaintext can be recovered as

m =
y

xs

xs = x
∑

j∈A
sjλj,A =

∏
j∈A

w
λj,A

j

At most t authorities’ secrets sj can be disclosed, as from the t + 1 known
values sj a secret key s can be computed (using Lagrange interpolation), and
the message can be directly recovered as in ElGamal decryption.

4.11 Mix Nets

Main idea of Mix Nets is to permute and modify (e.g. decrypt or re-encrypt)
some sequence of objects in order to hide the correspondence between elements
of original and final sequence. David Chaum proposed this idea in 1981 as a
realization of anonymous channel (see [Cha81]).

There are n mix-servers M1, . . . Mn; each with his own public key Ej and
private key Dj . When someone wants to send a message m through anonymous
channel, he encrypts it

E1(E2(. . . En(m)) . . .)

and sends to M1.
M1 waits until more encrypted messages arrive. Then it takes the received

messages, it removes one level of encryption, permute them in random order,
and sends them to M2.

Mix-server Mj receives the encrypted messages. It removes one layer of
encryption, shuffles them and sends Ej+1(Ej+2(. . . En(m)) . . .) to Mj+1. The
last mix-server Mn decrypts the messages and sends them to their recipients.

We can require that mix-server should give a proof of correct decryption
and permutation of the messages (see [PIK93]).

4.12 Interactive Proofs

In this section, the interactive proofs used in the voting schemes are pre-
sented. These proofs are based on the discrete log assumption and on the
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ElGamal cryptosystem. Similar proofs can be designed for other cryptosys-
tems (e.g. Paillier’s cryptosystem [DJ01]). All of these interactive proofs can
be made non-interactive using Fiat-Shamir technique described in the section
4.12.1. The presented protocols are not known to be zero-knowledge, but they
suffice our application.

4.12.1 Making interactive proof non-interactive

All mentioned protocols have similar structure: the prover wants to prove P .
He sends some A to the verifier, who gives the prover a challenge C (sequence of
random bits) and finally the prover computes a respond R = respond(P,A, C).
The communication (P ;A,C, R) and the fact that the prover knew nothing
about the C at the time he has computed A persuades the verifier that P
holds.

The whole protocol will become non-interactive if we order the prover him-
self to generate unexpected random bits C. The prover should not be able to
generate C before he creates P and A. Fiat and Shamir proposed a technique
where C is an output of the hash function: C = H(P,A).

The non-interactive proof is constructed as

(P ;A,H(P,A), R)

where R = respond(P,A, H(P,A)).

4.12.2 Equality of Discrete Logarithms

In this section, we present protocol that shows equality of discrete loga-
rithms. The prover has an 4-tuple (g, x, h, y), g, x, h, y ∈ Zp, and he shows
possession of an α ∈ Zp satisfying x = gα and y = hα. The protocol is depicted
in the figure 2. Security properties of this protocol can be found for instance
in [CGS97].

Prover Verifier
[(x, y) = (gα, hα)]

ω ∈R Zp

(a, b)← (gω, hω)
aa!!

a, b

c ∈R Zp

r ← ω + αc
!!aa

c

aa!!
r

gr ?= axc

hr ?= byc

Figure 2: Proof of knowledge for logg x = logh y

For random c, r anyone can construct (grx−c, hry−c, c, r), which is the ac-
cepting conversation with the right distribution. However, the prover sends a, b
before he receives the challenge c. Hence, without the knowledge of α he cannot
compute the respond r that meets verifier’s requirements.
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Prover Verifier
(x1, y1), . . . (xL, yL)
(x, y) = (xtg

υ, yth
υ)

di ∈R Zp, i = 1, . . . L
ri ∈R Zp, i = 1, . . . L

w ← υdt + rt

ai =
(xi

x

)digri

bi =
(

yi
y

)di
hri

aa!!
a, b

c ∈R Zp
!!aa

c

dt ← c−
∑

j 6=t dj

rt ← w − υdt

aa!!
d, r

c
?= d1 + · · ·+ dL

ai
?=
(xi

x

)digri

bi
?=
(

yi
y

)di
hri

Figure 3: 1-out-of-L re-encryption proof

Non-interactive version

• The prover’s computations are the same as in the interactive proof, but
he generates the challenge c for himself as c = H(a‖b‖x‖y), where H is a
secure hash function. The prover stores c, r as a proof.

• The verification can be performed by checking whether

c
?= H(grx−c‖hry−c‖x‖y)

Notice that instead of four group elements that are communicated in the
interactive protocol, the non-interactive version needs to store only two group
elements.

4.12.3 1-out-of-L Re-Encryption Proof

A prover wants to prove that for the encrypted message (x, y) there exists
a re-encryption in the L encrypted messages (x1, y1), (x2, y2), . . . , (xL, yL). The
messages are encrypted using ElGamal cryptosystem.

Assume that the re-encryption of (x, y) is (xt, yt) and that the re-encryption
randomness (the witness) is υ, i.e. (xt, yt) = (xgυ, yhυ). For the ease of under-
standing, the protocol is depicted in the figure 3. Note that the a, b, d, r from
the protocol are vectors: a = (a1, . . . , aL), b = (b1, . . . , bL), d = (d1, . . . , dL)
and r = (r1, . . . , rL).

The sent values ai, bi commit the prover to di and ri for all i = 1, 2, . . . , L,
except for i = t. Values at and bt only commit the prover to a value w = υdt+rt,
since at = gυdt+rt and bt = hυdt+rt . As the prover knows υ, he can still change
dt and rt after this round.
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The verifier challenges the prover to modify his d and r such that d sum
to the random number c. Actually, the prover modifies the values dt, rt to
satisfy those requirements (c = d1 + d2 + · · ·+ dL and w = υdt + rt), and sends
(modified) d1, d2, . . . dL and r1, r2, . . . dL to the verifier. This ability persuades
the verifier that among L encrypted pairs really is one re-encryption of (x, y)
and that the prover knows the re-encryption randomness; otherwise he could
not adapt his values to the given sum.

For security properties of this protocol, see [CGS97].
Non-interactive version

• The prover’s computations are the same as in the interactive proof, but
he generates the challenge c for himself as

c = H(a1‖ . . . ‖aL‖b1‖ . . . ‖bL‖x‖y‖x1‖ . . . ‖xL‖y1‖ . . . ‖yL)

where H is a secure hash function. The prover stores c, d1, . . . , dL, r1, . . . , rL

as a proof.

• The verification can be performed by checking whether

c
?= H(a1‖ . . . ‖aL‖b1‖ . . . ‖bL‖x‖y‖x1‖ . . . ‖xL‖y1‖ . . . ‖yL)

where

ai =
(

xi

x

)di

gri

bi =
(

yi

y

)di

hri

Notice that instead of 4L + 1 group elements that are communicated in the
interactive protocol, the non-interactive version needs to store only 2L+1 group
elements.

4.12.4 L Possibilities for Discrete Logarithm

For the encrypted message (x, y) = E(m) (in ElGamal cryptosystem) we
want to give a proof that m is one from L possible messages G1, . . . GL and
nothing else. Revealing any information about the m except that it really
belongs to this set is not desired. We suppose that the discrete logarithms (to
the bases g, h) of the elements G1, . . . GL are not known.

The aim is to prove that

logg x = logh(y/G1) ∨ loggx = logh(y/G2) ∨ · · · ∨ loggx = logh(y/GL)

It is enough to show that among the elements
(x1, y1) = (x, y/G1)
(x2, y2) = (x, y/G2)

...
(xL, yL) = (x, y/GL)

is the re-encryption of (1, 1). For this we can use the protocol from the
section 4.12.3.
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Prover Verifier
(x′, y′) = (xgυ, yhυ) hv = gzv

d, w, r ∈R Zp

a = gd, b = hd

s = gwhr
v

aa!!
a, b, s

c ∈R Zp

u = d + υ(c + w)
!!aa

c

aa!!
w, r, u

s
?= gwhr

v

gu ?=
(

x′

x

)c+w
a

hu ?=
(

y′

y

)c+w
b

Figure 4: Designated-verifier re-encryption proof

4.12.5 Designated-Verifier Re-Encryption Proof

The prover wants to privately prove that (x′, y′) is the re-encryption of
(x, y) = (gk, hkm), i.e. that (x′, y′) = (xgυ, yhυ), where υ is the re-encryption
randomness. The proof is constructed for the particular verifier who possess a
secret zv (discrete logarithm of hv to the base gv; hv = gzv). Knowledge of zv

enables him to construct this kind of proof for any couples (x′, y′), (x, y). The
protocol relies on the verifier’s knowledge of zv. If this property is not ensured
by the underlying public-key infrastructure, then the protocol, which ensures
the knowledge of the secret key (section 4.12.6), is performed.

The interactive proof is depicted in the figure 4. Values a, b, s sent to the
verifier commits the prover to d, w, r. The prover is not able to change the
values w, r. However, the verifier can use his knowledge of zv to open s to
arbitrary values w′, r′ satisfying w + rzv = w′ + r′zv.
Non-interactive version

1. The prover’s computations are the same as in the interactive proof, but
he generates the challenge c for himself as c = H(x‖y‖x′‖y′‖a‖b‖s), where
H is a hash function, and stores c, w, r, u as a proof.

2. The verification can be performed by checking whether

c
?= H

x‖y‖x′‖y′ ‖ gu(
x′

x

)c+w ‖
hu(

y′

y

)c+w ‖ gwhr
v


Notice that instead of 7 group elements that are transferred in the interactive

protocol, the non-interactive version stores only 4 group elements.

How can the verifier forge the proof. The verifier who knows the secret
zv such that hv = gzv can generate the non-interactive proof for any (x, y) and
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(x∗, y∗). The key point is that the value s does not commit the verifier to w and
r. The verifier selects α, β, u∗ at random, sets E = x‖y‖x∗‖y∗ and computes

c∗ = H

E‖ gu∗(
x∗

x

)α ‖ hu∗(
y∗

y

)α ‖gβ


w∗ = α− c∗

r∗ =
β − w∗

zv

and sets the (c∗, w∗, r∗, u∗) as the proof.

4.12.6 Ensuring the Knowledge of the Secret-Key

The following protocol is used to verify that the voter really knows his secret
key zv corresponding to the public key hv = gzv . Even if the voter does not
know his secret key and he acts according to the coercer’s orders (the coercer
knows the secret-key), he finally gets to know his secret key.

The voter’s knowledge of the zv is verified by the N authorities. It is as-
sumed that at least t of them are honest. The untappable channel between the
voter and the authorities is needed.

1. The voter shares his secret key zv among the authorities using (t + 1, N)
secret sharing scheme:

• He chooses a random polynomial of degree t: fv(x) = zv + α1x +
· · ·+ αtx

t

• He sends sj = fv(j) through the untappable channel to the authority
Aj , j = 1 . . . N

• He commits to the coefficients of the polynomial by sending Cj = gαj

to the bulletin board

2. Each authority Aj verifies whether the received share sj corresponds to
the committed polynomial

gsj ?= hvC
j
1C

j2

2 · · ·C
jt

t (= gzvgα1jgα2j2 · · · gαtjt
= gfv(j))

3. If the authority Aj detects an error, it complains and the voter is asked
to publish its share to the bulletin board. If the posted share does not
correspond to the commitments, the voter is discarded.

4. Finally, every authority not complaining in the previous stage sends her
share through the untappable channel to the voter.

At least t honest authorities either complain (and their shares are published
in the bulletin board), or send their shares secretly to the voter. The voter can
interpolate the received shares to obtain the secret key zv.
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5 Existing Voting Schemes

Despite extensive work on the voting schemes, no complete solution has
been found in either theoretical or practical domains. A number of practical
voting schemes have been proposed, with widely differing security properties.

We do not present all proposed voting schemes due to space limitation. We
focus only on the most important ones of them – the milestones in the electronic
voting, the schemes introducing new ideas and the schemes efficient in practice.
We try to illustrate the progress done both in the security properties as well as
in the effectiveness.

The first schemes used anonymous channel for casting the ballots. Later,
the schemes exploiting homomorphic encryption were introduced. Next, the
possibility for coercing and vote buying in all of these schemes was highlighted,
and the ways to achieve receipt-freeness were developed.

Schemes using anonymous channel and blind signatures are very popular in
practice due to their efficiency and their support for any type of the voting. A
price is paid for this efficiency: the voter has to act in more rounds (registration,
voting, counting, verifying whether his vote has been counted, complaining...)
and they provide no universal verifiability (usually).

Schemes using homomorphic encryption have more security properties, but
their communication complexity is quite high. Privacy is protected by the
encryption method. Coalition of all authorities usually can decrypt the voter’s
vote and violate the privacy. In addition, these schemes do not support any
type of the voting. They were designed to yes-no voting or 1-out-of-L voting,
and can be extended to K-out-of-L voting or 1-L-K voting.

5.1 The First Voting Scheme

The anonymous channel and the first voting scheme was proposed by Chaum
[Cha81].

The authorities are N mix-servers with their public keys E1, . . . EN . The
voter Vi generates his public key Ki and writes E1(E2(· · ·EN (Ki)) · · ·) to his
section in the bulletin board. Mix-servers shuffles these messages (sequentially
permute and decrypt, see section 4.11), and produce a list of keys Ki. Here, the
voter may claim when his Ki is not on the list. In that case, the elections are
restarted. If no complain is raised, the voter writes E1(· · ·EN (Ki‖K−1

i (vi)) · · ·)
in the bulletin board. Again, the mix-servers shuffles these messages, and the
list of Ki‖K−1

i (vi) is combined with the previous list to obtain the votes vi.
This scheme has many drawbacks. For example, failure of the single voter

will disrupt the election and the election has to be restarted. Moreover, if
the election has to be restarted after the second phase, when some votes have
already been published, it can affect the re-election. This scheme has been
enhanced in fairness and efficiency of the anonymous channel in [PIK93].

5.2 Schemes Based on Blind Signatures and Anonymous Chan-
nel

The schemes from [Cha88, Boy, FOO92, Rad95, JL97, JLY98] are of this
kind. Roughly said, these schemes works in the following way: The voter firstly
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obtains a token – in fact, the token is a message blindly signed by the authority.
The voter is able to obtain only one token, since the authority blindly signs only
one message for the voter. Next, the voter sends the token with his vote through
the anonymous channel back to the authority. The authority collects the votes
and publishes them together with the tokens.

The authority issuing the tokens will be called an administrator, and the
authority collecting the votes a collector. The terms administrator and collector
can refer to the two different authorities, or to the same authority acting both
as the administrator and as a collector, depending on the scheme.

This approach brings about some problems and security drawbacks that
should be solved somehow in the voting schemes. The most important ones are
as follows:
• no fairness – some participant (the collector) knows the intermediate re-

sult (partial sum) before the counting stage

• not collision-free – there is a chance that two voters will gain the same
token at the registration, hence the vote of one voter will be excluded as
double-vote

• a dishonest authority (administrator) may impersonate the voters ab-
staining from the voting and add its own votes, or secretly provide some
voters with more than one token

• in the case that the voter’s vote has not been counted, the voter cannot
complain without revealing his vote

To enhance the fairness, we can prevent the collector to see the actual votes
with a simple trick. Just let it collect the encryptions of the votes. The actual
votes will be decrypted later at the counting stage. The decryption key can
be sent anonymously by the voter (who has encrypted the vote), as it is in
the FOO-scheme (section 5.2.1), or the decryption key can be reconstructed by
some set of authorities (for instance, the JL-scheme from the section 5.2.3).

Collision-freeness can be achieved by inserting the voter’s identification into
the token in such a way that it is infeasible to extract it.

A dishonest behavior of the authority may be avoided by distributing the
power of the single authority to several authorities.

First scheme based on blind signatures was [Cha88]. It supports only 1-out-
of-L voting; it has large communication complexity at the registration phase
(proportional to ML); it is not fair and not collision-free.

Boyd’s scheme from [Boy]) is more efficient, but it is also not fair and not
collision-free.

The first practicable scheme ensuring both the privacy and the fairness is of
Fujioka, Okamoto and Ohta (section 5.2.1). It also prohibits the fraud by either
the voter or the authority. The voter has to participate in three rounds and
he has to send two messages through anonymous channel. Reduced number of
rounds appear in the scheme of Juang and Lei (section 5.2.3).

The scheme of Radwin (section 5.2.2) presents an idea how to trace double-
voters (this idea is also used in electronic cash).
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5.2.1 FOO-Scheme

This scheme comes from [FOO92].
Two authorities, an administrator and a collector, manage the elections.

The administrator is responsible for token issuing; the collector collects the
votes and publishes the result of the election. Token is an encrypted vote,
(blindly) signed by the administrator. The voter sends his token anonymously
to the collector. The collector collects the tokens, numbers them, and publishes
the list of the tokens at the end of the election. The voter looks up his token in
the list, and sends his token number together with the key anonymously to the
collector. The collector publishes the keys, decrypts the votes and announces
the result of the election.

Let IDi be the identification of the voter Vi, σi be the Vi’s signature scheme,
and σA the signature scheme of the administrator. Further, χ is a blinding and
δ a retrieving technique used in blind signatures (section 4.7).

Initialization stage. Administrator generates its signature scheme and
publishes the public key.

Registration phase. Voter prepares his ballot as follows:
• Vi selects his vote vi and creates the ballot xi = ξ(vi, ki), where ξ is a

secure bit-commitment using the random key ki (for bit-commitment, see
section 4.8).

• Vi computes the message ei using the blinding technique ei = χ(xi, ri)

• Vi signs si = σi(ei) and sends (IDi, ei, si) to the administrator.

Administrator A receives (IDi, ei, si) and checks whether:

• Voter Vi has the right to vote.

• Vi has not yet applied for the signature.

• The signature si of the message ei is valid.

If all these conditions are satisfied, then the administrator A signs di =
σA(ei) and sends di to the voter. If any of these conditions does not hold, the
administrator rejects the signature.

At the end of the registration phase, the administrator announces the num-
ber of voters who where given the administrator’s signature, and publishes the
list (IDi, ei, si).

Voting phase.

• Voter Vi retrieves the desired signature yi of the ballot xi by retrieving
technique yi = δ(di, ri).

• Vi checks that yi is the administrator’s signature of the xi. If the check
fails, Vi claims the disruption by showing that (xi, yi) is invalid.

• Vi sends his token (xi, yi) anonymously to the collector.
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• The collector C checks the administrator’s signature yi of the ballot xi.
If the check succeeds, C enters (l, xi, yi) onto a list as an l-th item.

Counting stage. Counting stage consists of two phases: Opening and
Counting.

Opening phase. When all of the voters had voted, the collector C pub-
lishes the list (l, xi, yi). Voter Vi then do the following:

• Vi checks that the number of ballots in the list is equal to the number of
voters. If the check fails, voter claims this by revealing the token xi, yi

and the blinding factor ri.

• Vi checks that his ballot is listed on the list. If his vote is not listed, then
Vi claims this by revealing (xi, yi), the valid ballot and its signature.

• Vi sends the key ki with number l, i.e. (l, ki) to C through anonymous
channel.

Counting phase.

• The collector C opens the commitment of the ballot xi, retrieves the vote
vi, adds ki and vi to the list, and checks that the vi is a valid vote.

• C counts the votes and publishes the voting result.

Achieved Properties

Eligibility. Only eligible voters are allowed to gain the token. Invalid
tokens and invalid votes will be detected. The token cannot be used multiple
times, so the voter can vote at most once. Therefore, the eligibility is achieved.

Privacy. The voter’s privacy is preserved even if the administrator and
the collector conspire: the relation between the voter’s IDi and his ballot xi is
hidden by the blind signature scheme. The voter sends his ballot xi as well as
the key ki through anonymous channel, so no one can trace it back.

Individual Verifiability. The scheme is individually verifiable: the voter
can check whether his ballot (xi, yi) is on the list published by the collector,
and whether his ki, vi has been added to the list.

When the voter claims the disruption, he need not to release his vote vi,
only xi, yi. The claiming voters showing valid tokens can be allowed to register
for the second time to obtain the new tokens. By any means, at the counting
stage when the opening of the tokens are published, everybody gets to know
which votes were sent by the claiming voters. Unless the election is restarted
when a valid claim occurs, the privacy of the claiming voters is violated.
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Universal Verifiability. The scheme is not universally verifiable – if some
voters abstain from voting after the registration phase, the administrator can
add its own votes instead of theirs. The voter has to participate in three rounds:
registration, voting and opening.

Fairness. This election scheme is fair – counting of the ballots does not
affect the voting, as the counting stage comes after the voting phase.

Receipt-Freeness. Anyone who gets to know the voter’s token can easily
find out his vote in the list published by the collector at the end of the election.
Therefore, the receipt-freeness is not achieved.

A Modification Achieving Receipt-Freeness

A [Oka97] is in fact a modification of the FOO-scheme guaranteeing inco-
ercibility. The authorities managing the election are: an administrator (regis-
tration manager), a collector (collecting the tokens) and a counter (publishing
the actual votes and the final tally). The list of changes is as follows:

• ξ is a trapdoor bit commitment

• It is ensured that the voter knows the trapdoor of the bit commitment ξ.

• The voter sends his token (xi, yi) anonymously to the collector.

• The voter sends the opening (vi, ki, xi) of the xi through the untappable
anonymous channel to the counter.

• The collector publishes the list of the tokens (xi, yi).

• The counter publishes the actual votes vi in random order and proves that
he knows the permutation π and ki such that xπ(i) = ξ(vi, ki) without
revealing π, ki (π maps the votes to the tokens).

As the trapdoor bit commitment ξ does not bind the voter to the vote vi,
the coercer has no information about his actual vote seeing his token (xi, yi).
The coercer cannot intercept the opening of the ballot, as it is sent through
untappable channel. The counter keeps the opening keys ki as well as the
permutation π mapping the votes to the tokens secret. The counter cannot
publish any votes it wants, as the proof of knowledge is required.

The coercer may order the voter to use a bit commitment scheme without
trapdoor (e.g. the coercer generates G = ga for the voter who now do not know
a). Therefore, it should be ensured that the voter knows the trapdoor and that
he is really able to open the token in various ways. For more details see [Oka97].

The voter may object if his token (xi, yi) is not on the list. Privacy of the
claiming voters is protected against the public, but not against the counter.

After the registration, the voter cannot abstain from the voting. The admin-
istrator can add extra tokens, or the counter may claim it has not received the
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opening of the ballot (xi, yi). We can avoid this foul behavior by distributing the
power of a single administrator and a single counter to the more administrators
and the more counters.

5.2.2 Radwin-Scheme

This scheme comes from [Rad95].
We present this scheme with the one reliable authority acting both as the

administrator and as the collector. Of course, the scheme can be extended to
incorporate more authorities in the election management for the higher security.

Unlike the FOO-scheme, the token does not contain the actual vote. The
voter trying to vote twice will be traced. The scheme requires existence of the
anonymous channel supporting replays (recipient of the anonymous message
can send a replay to the anonymous sender).

We assume the existence of two-argument functions f , g that are collision-
free (finding two inputs that maps to the same output is infeasible), output of
f looks random and g is 1 to 1 (or c to 1) with the first argument fixed.

Initialization stage. The authority creates and publishes its RSA public
key (n, e) and the security parameter l.

Registration phase. The voter V with the identification ID constructs his
pseudonym (token) P . For the ease of understanding, the protocol is depicted
in the figure 5.

The voter selects numbers ak, ck, dk, rk, k = 1, 2, . . . 2l randomly from Zn

and computes Bk = re
kf(xk, yk) where xk = g(ak, ck), yk = g(ak ⊕ ID, dk). (Bk

is the blinded message f(xk, yk)). He sends Bk, k = 1 . . . 2l to the authority.
There is no reason for the authority to believe that the voter has constructed

Bk, k = 1 . . . 2l as described above. Therefore, the voter is asked to open one
half of Bk, randomly selected by the authority. (We denote the set of selected
Bk as R). The voter opens Bk by revealing the numbers ak, ck, dk, rk used in
the construction. The authority checks whether revealed values really fit Bk: it
verifies whether Bk = re

kf(g(ak, ck), g(ak ⊕ ID, dk)) for all k ∈ R. If the check
succeeds, the remaining half of Bk can be considered to be correctly formed as
well. Otherwise, the authority rejects the registration.

Further, the authority signs the remaining Bk, k /∈ R by computing Sk =
Bd

k , k /∈ R, where d is its private RSA key, and sends to the voter S =
∏

k/∈R Sk.
Notice that Sk is of the form Sk = Bd

k = (re
kf(xk, yk))d = red

k f(xk, yk)d =
rkf(xk, yk)d and therefore S =

∏
i/∈R rkf(xk, yk)d.

Finally, the voter computes his pseudonym as P =
∏

k/∈R f(xk, , yk) and its
signature SP = S∏

k/∈R
rk

=
∏

k/∈R f(xk, yk)d.

The set of ak, ck, dk, k ∈ R is no more useful. For simplicity, we will denote
the remaining elements aj , cj , dj , j /∈ R as a1, c1, d1, . . . al, cl, dl.

Voting phase. The voter chooses his vote v, creates a ballot (v, P, SP ),
encrypts it with the authority’s public key (e, n) and sends (v, P, SP )e mod n
through the anonymous channel.
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Voter Authority
k = 1, 2, . . . 2l

ak, ck, dk, rk ∈R Zn

Bk = re
kf(xk, yk)

xk = g(ak, ck)
yk = g(ak ⊕ ID, dk)

aa!!
B

R ⊂R {1 . . . 2l}
|R| = l

!!aa
R

aa!!
ak, ck, dk, rk; k ∈ R

k ∈ R:
Bk

?= re
kf(xk, yk)

xk = g(ak, ck)
yk = g(ak ⊕ ID, dk)

S =
∏

k/∈R Bd
k

SP = S∏
k/∈R

rk

!!aa
S

P =
∏

k/∈R f(xk, yk)

Figure 5: Registration phase – constructing a pseudonym

The authority decrypts this message and verifies the signature SP for the
pseudonym P . It sends back to the voter a random binary vector Z = (z1, . . . zl)
of the length l.

The voter responds with l triples partially opening the structure of his pseu-
donym. If zk = 0, the kth triple is ak, ck, yk. If zk = 1, the kth triple is
xk, ak ⊕ ID, dk. That is, for each k one argument of the f is revealed directly,
and the second argument can be computed as an output of the g taking the
other two revealed numbers as the arguments.

The authority verifies that the voter’s responses perfectly fit the P he sent
in.

If the test of the pseudonym P succeeds, the authority has not yet received
another vote from the voter with pseudonym P and the vote v is valid, the
authority counts the vote v.

In the case that the pseudonym P has been used twice, the authority can
determine with high probability the identity of this double-voter. When the
voter sent a pseudonym P for the first (second) time, he was challenged by
a random vector Z1 (Z2) to partially reveal the structure of P . With high
probability, the binary vectors Z1 and Z2 differs at least in one index k. The
kth triples of the voter’s responses to Z1, Z2 now contains ak and ak⊕ID. The
ID (voter’s identification) can be now easily extracted.

Counting stage. The authority counts the received valid votes and pub-
lishes the final sum. Two variants of the counting stage are possible:
• No-List Variant: Only the final sum of the votes is made public.
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Voter Authority
v, P, SP

aa!!
(v, P, SP )e

P
?= SP e mod n

!!aa
Z

zk ∈R {0, 1}
zk = 0: tk = (ak, ck, yk)

zk = 1: tk = (xk, ak ⊕ ID, dk)
aa!!

T

P
?=
∏

pk

zk = 0: pk = f(g(tk1, tk2), tk3)
zk = 1: pk = f(tk1, g(tk2, tk3))

Figure 6: Voting phase – casting a ballot

• List Variant: The authority publishes a list containing received ballots
(v, P, SP )e, pseudonyms P, SP , the challenges Z with the answers T and
corresponding votes v.

Achieved Properties

Eligibility. The voter cannot construct his pseudonym by himself; he
needs the authority’s signature. The authority grants the voter only one pseu-
donym. If the voter tries to use his pseudonym twice, his identity is revealed
with high probability. The eligibility is achieved if the authority is honest.

Privacy. At the end of the registration phase, the authority can tell noth-
ing about the voter’s pseudonym. The voter discloses only one half of the Bk

to the authority, which are not used in the pseudonym. Since the functions f ,
g are collision-free, the voter cannot generate any other a′k, b

′
k, c

′
k, d

′
k, r

′
k such

that Bk = (r′k)
ef(g(a′k, c

′
k), g(b′k, d

′
k)). This way, the authority ensures that the

pseudonym is correctly constructed (e.g. the voter has included his ID). As
the output of f looks random, the pseudonym (a multiplication of the outputs
of f) looks random as well. The relation between the voter and his pseudonym
is protected by the blind signature scheme.

The voter’s privacy is protected unless he tries to use his pseudonym twice.
The ballot cannot be traced back to the voter, since it is sent through anony-
mous channel.

When the voter uses his pseudonym for the first time, he partially reveals
its structure to the authority. The voter can open his pseudonym only in the
way it had been constructed, since the functions f , g are collision-free. That
is, for the kth output of f he reveals triple t1, t2, t3 where t3 = g(t1 ⊕ ID, t4)
and the t4 remains undisclosed. As the g is 1 to 1 (or c to 1) with the first
argument fixed, the authority can guess nothing about the t1 ⊕ ID seeing just
t1, t3. Hence, nothing can be told about the voter’s ID.
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When the voter attempts to use his pseudonym for the second time, the
information he revealed at the first and the second use can be matched to
extract his ID.

Individual verifiability. In the No-List Variant only the authority sees
the pseudonyms. Hence, nobody can verify which votes the authority has really
counted. It can publish any number it wants.

The List Variant is individually verifiable: the voter can verify whether his
token and his vote are on the list. If the voter does not find his pseudonym
in the list, he can protest by showing a proof that he has sent a valid ballot
and that his response to the authority’s challenge has been correct. Such a
complaint can compromise his privacy (at least the authority will get to know
his vote).

Universal verifiability is not achieved, as the authority can impersonate the
abstaining voters and add its own votes, or provide some voters with more
tokens at the registration phase.

Receipt-Freeness. List Variant is not receipt-free; voter’s receipt are the
random numbers ai, ci, di, ri generated at the registration stage, from which his
pseudonym can be constructed and his vote can be retrieved from the published
list.

The No-List Variant is receipt-free, if the voter sent his ballot through the
anonymous untappable channel. The coercer can obtain the voter’s pseudonym,
but if he cannot tamper on the anonymous channel, and if the authority will not
dispose the list of v, P to anyone, then in the No-List Variant with anonymous
untappable channel he has no way to gain the relation between the v and P .

5.2.3 JL-Scheme

This scheme [JL97] involves one manager (acting both as the administrator
and as the collector), and N scrutineers. The role of the scrutineers is to share
the threshold ElGamal key used in encrypting the votes. Encrypted vote is a
part of the token.

This scheme require the valid actual vote to be of the form

−
vi= vi‖Ri‖g(vi‖Ri‖RD)

where vi is the intention of the voter Vi, g is a one-way function, Ri are random
bits generated by the voter, and RD is a voting tag – redundancy bits that
characterize the election. RD is determined and published by the manager at
the initialization stage and has to be unique for each election.

RD prevents the voter to re-use the vote from the previous elections. As
the vote is a part of the token, the tokens of the previous election are no more
useful. The manager does not need to re-generate its signature scheme before
each election.

We present the scheme in a simplified form. For more details, see [JL97].
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Initialization stage. The manager generates his RSA key (n, e) (for
blind signatures), a public one-way permutation f , a public one-way function
g and the public redundancy bits RD for verifying the validity of each ballot.
The scrutineers set up (t, N) threshold ElGamal cryptosystem with public key
(p, g, h).

Registration phase. The voter Vi with identification IDi chooses random
string ri, si and constructs the token

xi = f(IDi‖si)‖RD‖EVi

where EVi = (gki , hki
−
vi), ki ∈R Zp, is the encrypted actual vote

−
vi. The

voter blinds his token ei = re
i xi and sends the blinded message ei to the admin-

istrator.
The manager checks that the voter Vi has not yet registered. If not, the

manager sends di = ed
i to the voter.

Voting phase. The voter extracts the signature of his token yi = di/ri = xd
i

and sends (xi, yi) anonymously to the manager. The manager checks whether
ye

i = xi. If yes and the redundancy bits RD from xi are valid, he records (xi, yi)
and preserves only one copy of xi.

Counting stage. The manager publishes all accepted ballots (xi, yi). Each
voter has to check if his ballot has been published. If his ballot is omitted, he
makes an open objection by broadcasting (xi, yi).

The manager requests t + 1 honest scrutineers to send their secret shares.
He computes the secret threshold key and recovers voters’ intentions. The ad-
ministrator publishes all ballots (xi, yi, vi), all registrations ei and the threshold
secret key. Anyone can check if every ballot is valid and the total number of
the ballots equals to the total number of the registrations to prevent the ad-
ministrator from adding extra ballots.
Achieved Properties and Extensions

Eligibility. Each voter can obtain only one token. Invalid tokens or double
tokens will be excluded. Invalid votes will not be counted. Therefore, the
eligibility is achieved.

Privacy. The link between the ballot (xi, yi) and the voter is protected
by the security of the RSA signature scheme. Extracting IDi from the ballot is
also computationally infeasible, as f is the one-way function. The sent ballot
(xi, yi) cannot be traced back to the voter, as it was transmitted through the
anonymous channel.

Collision-Freeness. The signed tokens requested by the honest voters
are distinct. Therefore, the scheme is collision-free. A dishonest voter Vi may
construct a token with Hi = f(IDj‖RD) (j 6= i), but there is still a small
probability that he will obtain the same token as the honest voter Vj .
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Individual Verifiability. The scheme is individually verifiable: The
voter can check whether his token is on the list.

The voter’s complaint, unless sent anonymously, violate his privacy, as it
discloses the link between him and his ballot (xi, yi).

Abstaining. The voter cannot abstain from the voting after the regis-
tration phase. However, the scheme can be revised to distribute the power of
a single administrator to several administrators (see [JLY98]). Small coalition
of administrators cannot impersonate the abstaining voter, as it is not able to
generate valid signature.

Receipt-Freeness. This scheme is not recept-free, since the voter’s re-
ceipt is his token.

Extension. The power of the manager is distributed among more man-
agers in [JLY98].

5.3 Schemes Using Homomorphic Encryption

The first scheme using homomorphic encryption has been proposed by Be-
naloh and Yung [Ben87, BY86]. Iversen [Ive91] was inspired by this work. Sako
and Kilian [SK94] improved the communication complexity of the Benaloh’s
scheme.

Big progress was done by Cramer, Gennaro and Schoenmakers in [CGS97].
This efficient and simple scheme (presented in the section 5.3.3) influenced
further development in this area.

[Sch99] is less efficient than [CGS97], but it is more suitable for small board-
room election. No interaction between the authorities is needed (except for the
setting up the system at the initialization stage)

Receipt-freeness was introduced by Benaloh and Tuinstra [BT94]. They
proposed a receipt-free scheme based on the voting-booth. Hirt and Sako in
[HS00] point out that their scheme is not receipt-free.

Lee and Kim in [LK00] achieve receipt-freeness by a cooperation of a voter
and a honest verifier. The honest verifier helps the voter to encrypt his vote
and to prove its validity. However, a coalition of the honest verifier and a voter
can cast invalid or double votes.

Hirt and Sako [HS00] (section 5.4) proposed efficient receipt-free scheme
based on the work done in [CGS97].

5.3.1 Benaloh’s Scheme

The scheme comes from [Ben87]. The scheme introduces many new ideas
that were used later in other schemes.

In this scheme, two primitives are used: secret sharing scheme and proba-
bilistic public-key encryption with homomorphic property

E(m1, k1)E(m2, k2) = E(m1 + m2, k1k2)
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(k1, k2 are random parameters used in encrypting messages m1, m2).
Bulletin board is implicitly used for collecting votes.

Yes-No voting scheme

Initialization stage. Each authority Aj generates its own public key
pair. Encryption of a message m with the public key of the authority Aj will
be denoted as Ej(m).

Voting stage. Voter cast a vote 0 or 1 as follows:

1. Voter generates a pair (v1, v2) as a permutation of 0, 1.

2. For each i = 1, 2 voter creates shares s1(vi), . . . , sN (vi) using Shamir
(t + 1, N) secret sharing scheme with the secret vi.

3. Voter encrypts jth share with the public key of the authority Aj . He gets

h = (h1, h2)

hi = (hi1, hi2, . . . , hiN ), i = 1, 2

hij = Ej(sj(vi), kij), j = 1, . . . , N

4. Voter publishes h and proves to the authorities (see below) that it is
correctly constructed.

5. Voter chooses h1 or h2 as his desired vote.

The voter proves the correctness of his vote by the following interactive
proof:

1. Voter creates T more pairs of the encrypted votes h1, . . . , hT , hr
ij =

Ej(sr
j(v

r
i ), k

r
ij), 1 ≤ r ≤ T , and sends them to the authorities.

2. Authorities generate T random bits c1 . . . , cT and send them to the voter.

3. For each cr = 0 the voter reveals how the pair hr = (hr
1, h

r
2) has been

constructed by sending vr
i , s

r
j(v

r
i ), k

r
ij , i = 1, 2, j = 1, . . . , N .

For each cr = 1 he reveals permutation that maps (v1, v2) to the (vr
1, v

r
2).

Assume that v1 = vr
1 and v2 = vr

2. It holds hij = Ej(sj(vi), kij) hr
ij =

Ej(sr
j(vi), kr

ij). From the homomorphic property it follows that h/hr is
the encryption of the (0, 0)-vote: hij/hr

ij = Ej(sj(vi) − sr
j(vi), kij/krij).

Voter sends sj(vi)− sr
j(vi), kij/kr

ij to the authorities.

4. The authorities check whether the voter’s response really fit the h:

For all cr = 0 they check that hr is correctly formed.

For all cr = 1 they check whether h/hr is the encryption of (0, 0) vote.
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Counting stage. Let voter Vi’s vote be hi = (hi1, . . . , hiN ). Authority Aj

computes ∏
i

hij =
∏
i

Ej(sj(vi)) = Ej(
∑

i

sj(vi))

as follows from the homorphic property. Aj decrypts the sum of its shares
Sj =

∑
i sj(vi)). Sj together with the proof of correct decryption is made

public. Let A be the set of t + 1 authorities that were successful in decrypting
their shares Sj and that passed the proof of correct decryption. The final sum
of the votes can be computed by anyone as

S =
∑
j∈A

Sjλj =
∑
j∈A

(∑
i

sj(vi)

)
λj =

∑
i

∑
j∈A

sj(vi)λj =
∑

i

vi

where λj are Lagrange coefficients.

Properties and Extensions

Eligibility. Only eligible voters are allowed to vote, and at most once.
The voter cannot cast invalid or double vote, as he is required to prove the
validity of his vote.

Privacy. The voter’s privacy is protected by the encryption scheme. Any
set of at most t authorities can gain nothing about his vote.

Universal Verifiability. This scheme is universally verifiable: Anyone
can verify the validity of the sent votes, anyone can multiply the encrypted
shares per each authority and anyone can verify whether the authority correctly
decrypted its sum of shares. From these sumn of shares anyone can compute
the final result.

Receipt-Freeness. The voter’s receipt consists of the random parameters
kij used in the encryption of his vote.

1-out-of-L voting. This scheme can be directly extended to 1-out-of-L
voting scheme: permutation v1 . . . vL of L possibilities is encrypted to h =
(h1 . . . hL). L possibilities can be represented as 1,M, M2 . . .ML (M is the
number of voters). This way, we can easily derive result of the elections from
the sum of the votes.

Weighted-voting. Furthermore, extension to weighted-voting is also straight-
forward: if the voter’s vote should be counted k times, his L-tuple will be
(kv1 . . . kvL).
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Communication Complexity. In 1-out-of-L voting the h is L-tuple and
consists of O(LN) group elements. To prove its validity, the voter has to sent
T more L-tuples and reveal either their structure or their relation to the h.
Overall, the voter has to transmit O(TLN) group elements to the bulletin
board.

5.3.2 Schoenmakers’ Scheme

The scheme is from [Sch99]. Similarly to the Benaloh’s scheme, the voter
shares his vote among the authorities using secret sharing scheme. In this case
it is publicly verifiable secret sharing described in the section 4.3.

Computing the final tally exploits the homomorphic property of the secret
sharing (the tally – sum of the secrets is reconstructed from the multiplied
shares).

Initialization stage. Initialization of the publicly verifiable secret shar-
ing scheme is performed (generators g, G of Zp, public keys hj = gzj of the
authorities are published).

Voting stage. Voter Vi chooses his vote vi ∈ {0, 1} and a random si ∈ Zp.
He runs the distribution protocol (from the section 4.3) to share a secret gsi and
publishes the value Ui = gsi+vi . In addition, to show that indeed vi ∈ {0, 1} he
gives a proof that

logG C0 = logg Ui ∨ logG(GC0) = logg Ui

(C0 = Gsi is published as a part of the distribution protocol). A proof from
the section 4.12.4 is suitable.

Anyone can check the ballot in the bulletin board due to the public verifia-
bility of the secret sharing scheme and the given proof of vi ∈ {0, 1}.

Counting stage. Suppose that the voters Vi, i = 1, . . . m succeeds in cast-
ing valid ballots. Firstly, all the respective encrypted shares are accumulated

H∗
j =

∏
i

Hij =
∏
i

h
pi(j)
j = h

∑
i
pi(j)

j

Next, each authority Aj applies a reconstruction protocol from the section 4.3
to obtain g

∑
i
pi(0) = g

∑
i
si , due to the homomorphic property. Combining with∏

i Ui = g
∑

i
si+vi we gain g

∑
i
vi = gT . The final tally T can be now computed

as in the CGS-scheme (see section 5.3.3).
Achieved Properties and Extensions

Eligibility. Only eligible voters can write into the bulletin board. The
voter cannot cast invalid or double vote, since he is required to give a proof of
the validity of the vote.

Privacy, Robustness. Any set of at most t authorities can tell nothing
about the voter’s vote. Privacy is protected by the security of the publicly
verifiable secret sharing scheme.
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Universal Verifiability. Anyone can verify the validity of the voter’s
vote. The publicly verifiable secret sharing scheme prevents the voter from dis-
tributing invalid shares to the authorities. Anyone can multiply the encrypted
shares of the jth authority, and anyone can verify whether the jth authority
had decrypted its sum of the shares correctly. Anyone can compute the final
tally from the published sums of the shares.

Receipt-Freeness. The scheme is not receipt-free, since the voter’s re-
ceipt is the secret si.

1-out-of-L Voting. We propose the following extension to 1-out-of-L vot-
ing:

The voter Vi chooses his vote vi from the set {1,M, M2, . . . ML−1}, dis-
tribute the secret gsi among the authorities and publishes the value Ui = gsi+vi .
The proof of validity of the vote boils down to the proof of

logG(GC0) = logg Ui ∨ logG(GMC0) = logg Ui . . . ∨ logG(GML−1
C0) = logg Ui

(recall that C0 = Gsi is published as a part of distribution protocol). Just
use the non-interactive proof from the section 4.12.4.

The authorities decrypt the value
∑

vi, from which the result of the election
can be easily computed.

Communication Complexity. Distribution of the secret si to the au-
thorities requires to send O(N) group elements to the bulletin board. The
non-interactive proof of the validity of the vote in 1-out-of-L voting consists of
O(L) group elements. Overall, the voter has to write O(N +L) group elements
to the bulletin board.

5.3.3 CGS-Scheme

This schemes comes from [CGS97]. It is very efficient and satisfies all re-
quirements except for the receipt-freeness. It is based on the discrete log as-
sumption, and it can be modified for q-th residuosity assumption.
Yes/No Voting scheme

Voters publicly send their votes encrypted by ElGamal cryptosystem. The
decryption key is shared between the authorities. At the end of the election,
votes are multiplied and the authorities decrypt the sum of the votes as the
result of the election.

Initialization stage. Robust threshold ElGamal cryptosystem is set up
(described in the section 4.10); the authorities share the decryption key s.
Public key (p, g, h), commitments of the shares hj = gsj and a fixed generator
G of Gq are published.
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Voting stage. The voter Vi chooses his vote: m0 = G for yes-vote, m1 =
1/G for no-vote. The encrypted vote is of the form (x, y) = (gk, hkmb), where k
is random and b ∈ {0, 1}. Voter adds a proof that his vote is of the correct form.
For this, a non-interactive proof that logg x = logh(y/G)∨ logg x = logh(yG) is
used. An interactive proof from the section 4.12.4 is suitable; it can be made
non-interactive using the Fiat-Shamir technique described in the section 4.12.1.
Ballot (encrypted vote + proof of validity) is sent to the bulletin board.

Counting stage. The proofs of validity are checked by the authorities
and the product of all valid encrypted votes (X, Y ) = (

∏
i xi,

∏
i yi) is formed.

Finally, the authorities jointly execute the decryption protocol from the section
4.10 for (X, Y ) to obtain the value of W = Y/Xs. Each authority also publishes
a non-interactive proof (from the decryption protocol) that it has really used
its part of the shared key.

Thus, we get W = GT , where T is a difference between the number of yes-
votes and no-votes; −M ≤ T ≤ M ; M is a number of eligible voters. Hence,
T = logG W , which is in general hard to compute. The value of the T can
be determined using O(M) modular multiplications by iteratively computing
G−M , G−M+1, · · · until W is found.

1-out-of-L Voting Scheme

There are numerous approaches to extent the previous yes/no voting
scheme to 1-out-of-L elections. One is as follows:

We simply take L generators G1, . . . , GL, and accumulate the votes for each
option separately. The proof of validity of the ballot (x, y) now boils down to
a proof of knowledge of

logg x = logh(y/G1) ∨ · · · ∨ logg x = logh(y/GL)

The voter can generate this proof only for one generator Gj . Thus, it is auto-
matically guaranteed that he will vote only for one option.

Problem arises in the computing the final tally. The decryption of the
product of all valid votes leads to W = GT1

1 GT2
2 · · ·G

TL
L . The values T1, . . . , TL

can be computed using O(ML−1) multiplications3.

Achieved properties

Eligibility. Incorrect ballots of malicious voters will not pass through the
proof of validity. The scheme is resistant up to t malicious authorities.

3Note that the condition
∑L

i=1
Ti = m, m ≤ M (m is the number of the voters participating

in the election) can be exploited by reducing the problem to a search for T1, . . . , TL−1 satisfying

W/Gm
L = (G1/GL)T1(G2/GL)T2 · · · (GL−1/GL)TL−1

The naive method (checking all possible combinations) needs time O(mL−1), and it can be
improved considerably by a generalization of the baby-step giant-step algorithm (see [DL01])
of time O((

√
m)L−1)
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Privacy. Privacy of the individual votes is guaranteed partly by the secu-
rity of ElGamal cryptosystem. Individual vote is hidden for any set of at most
t authorities.

Universal Verifiability. Any observer can check the proofs of validity
of the ballots, any observer can make a product of the valid votes, and any
observer can verify the correctness of the decryption by checking the proofs of
authorities of using correct shares.

Receipt-Freeness. Voter can prove to any third party how he has voted
just by showing randomness k used in the ElGamal encryption. Therefore, this
scheme is not receipt-free.

Communication Complexity. In 1-out-of-L voting, voter’s ballot con-
sists of 2 group elements forming the encrypted vote and 2L+1 group elements
belonging to the non-interactive proof of the validity of the vote. Overall the
voter needs to transmit 2L + 3 group elements to the bulletin board.

Further extensions and modifications

K-out-of-L voting. Recall that in this type of the voting the voter selects
K from L possibilities, and the selected possibilities should be distinct.

As in the 1-out-of-L voting, L possibilities are represented by generators
G1 · · ·GL. The final tally will be obtained from the form GT1

1 GT2
2 . . . GTL

L , where
Ti ≤ KM .

The voter sends K encrypted votes (x1, y1), . . . , (xK , yK). He needs to prove
that these ballots contain valid possibilities and that these possibilities are
distinct.

Take a pair of the ballots [(xi, yi), (xj , yj)], i < j. If

(xi, yi) = (gki , hkiGr)

is the encryption of the Gr and the

(xj , yj) = (gkj , hkjGs)

is the encryption of the Gs, we say that the [(xi, yi), (xj , yj)] is the encryption
of [Gr, Gs].

It is enough to prove for all pairs of the ballots [(xi, yi), (xj , yj)], i < j that
this pair is the encryption of an element from the set

{[Gr, Gs] | r, s = 1 . . . L, r 6= s}

This can be achieved as follows:
The product of the pair of ballots

(xixj , yiyj) =
(
gkI+kj , hki+kjGrGs

)
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is the encryption of GrGs. Hence, it is enough to prove that (xixj , yiyj) is the
encryption of the one element from the set S = {GrGs | r, s = 1, . . . , L, r 6= s}.
The set S contains L(L−1)

2 elements. Therefore, we use 1-out-of-L(L−1)
2 re-

encryption proof from the section 4.12.3.
To sum up, the voter sends K encrypted votes to the bulletin board, which

are 2K group elements. Furthermore, he is required to give K(K−1)
2 1-out-of-

L(L−1)
2 re-encryption proofs. Altogether, he transfers

2K +
K(K − 1)

2

(
2
L(L− 1)

2
+ 1

)
= O(K2L2)

group elements to the bulletin board.

1-L-K voting. We assume that each of the L sets contains n elements.
ith element of the rth set is represented as G(rn+i)M , where G is a fixed gen-
erator and M is the number of voters. Voter sends K different elements from
{G, GM , G2M , . . . , GnM} as in the K-out-of-n voting. Moreover, he has to spec-
ify from which set these elements should be chosen. He sends B = (gk, hkGrnM )
for the rth set. Each of the previously sent Bi is multiplied with B to get the
desired BiB = (gki+k, hki+kG(rn+i)M ).

To specify the set his favorites belongs to, the voter has to transmit 2+2L+1
group elements (2 elements form an encryption of the set, 2L + 1 elements are
needed for non-interactive proof). Selecting K elements from the set is in fact
K-out-of-n voting that transmits O(K2n2) elements. Altogether the number of
transmitted group elements grows to O(L + K2n2).

Alternative cryptosystem. We have modified the ElGamal cryptosys-
tem to encrypt the message m as E(m) = (gk, hkGm). By this modification we
gain the desired homomorphic property E(m1)E(m2) = E(m1 +m2) instead of
the ElGamal’s homomorphism E(m1)E(m2) = E(m1m2). However, our mod-
ified system does not present a trapdoor to decrypt the message m from the
E(m) directly; we need to assume that the message space is small enough to
make the exhaustive search through all possible messages feasible.

This assumption is very strong, and it is not satisfied when the L, M are
quite high. Consider for instance the 1-out-of-L voting with M = 1000000
eligible voters and L = 100 candidates; the decryption of the final tally would
require about

√
100000099 ≈ 10300 operations.

What we need is a public-key cryptosystem, threshold and homomorphic in
the sense E(m1)E(m2) = E(m1 +m2), allowing direct computation of the mes-
sage m from E(m), without exhaustive search. Possibility to prove that E(m)
is the encryption of m1 or m2 in a zero-knowledge manner is also important
to ensure validity and correctness of the vote. Threshold version of the Paillier
cryptosystem (see [FPS00], [DJ01]) is suitable.

Schoenmakers [Sch99] proposed a similar approach based on the publicly
verifiable secret sharing.

Lee and Kim [LK00] modified this scheme to achieve receipt-freeness. An
honest verifier re-encrypts the voter’s vote, and together with the voter con-
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structs a proof of its correctness. All communication between the voter and the
honest verifier is done through the untappable channel. It is supposed that the
“honest verifier” does not collaborate with the dishonest voter trying to cast
invalid or double vote.

5.4 HS-Scheme

The scheme comes from [HS00].
The possibility of coercing in the CGS-scheme is caused by the randomness

k used in the encryption of the vote. The problem is that when the voter himself
encrypts his vote, he knows what and how is encrypted, and he can be coerced
to reveal it. In the HS scheme, possible votes are encrypted and permuted by
the authorities, one after another. A permutation of the encrypted votes is sent
through the untappable channel to the voter. Voter just points at the vote he
chooses. The scheme is designed in such a way that only the voter gets to know
the final permutation and he can lie about it to anyone else.

5.4.1 1-out-of-L Voting Scheme

Votes will be encrypted as in the CGS scheme (section 5.3.3), using El-
Gamal encryption. Recall that ith choice encrypts to the (gk mod p, hkGi mod
p), where (p, g, h) is the public El-Gamal key and k is a random number.

Initialization stage. Similarly to the CGS scheme, N authorities set
up robust threshold El-Gamal cryptosystem. The generators G1, G2, . . . GL

representing the possible choices are published. Authorities also create a public
list of all standard-encrypted valid votes e

(0)
1 , e

(0)
2 , . . . , e

(0)
L , where e

(0)
i is the

encryption of the ith choice Gi using the randomness k = 0: e
(0)
i = (1, Gi)

Voting stage. For each voter V , the authorities generate a list of the
encryptions of all possible votes, from which the voter V selects the one repre-
senting his intention.

In turn, for each authority Aj (where j = 1, 2, . . . , N):

Roughly said, the Aj takes on input the list e
(j−1)
1 , . . . , e

(j−1)
L , re-encrypts

each element from the input list, and permutes the list in a random order. This
way, Aj produces the output list e

(j)
1 , . . . , e

(j)
L . Moreover, Aj is required to prove

that the output list has been properly constructed. If the Aj fails in some way
or the voter objects to Aj , then the Aj is ignored and it is put e(j) = e(j−1).
The first authority picks the standard list e

(0)
1 , . . . , e

(0)
L as the input.

Below is the more detailed description of the protocol:
1. Aj computes the output list e

(j)
1 , . . . , e

(j)
L as follows:

(a) Aj selects random permutation πj : {1 . . . L} → {1 . . . L} and the
random numbers k1, . . . , kL ∈R Zp.

(b) The πj(i)th item in the final list is obtained by re-encrypting the ith
item e

(j−1)
i from the input list with the randomness ki.
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2. Without revealing the permutation πj as well as the randomness k1, . . . , kL,
the Aj shows that the output list e

(j)
1 , . . . , e

(j)
L is correctly constructed:

For each i = 1 . . . L the Aj proves that there exists a re-encryption of the
ith item ej−1

i of the input list in the output list e
(j)
1 , . . . , e

(j)
L . For this,

the non-interactive version of the 1-out-of-L re-encryption proof from the
section 4.12.3 is used.

3. Aj secretly transfers the permutation πj together with the private proof
of its correctness through the untappable channel to the voter V . More
precisely, Aj proves that for each i, e

(j)
πj(i)

is the re-encryption of e
(j−1)
i .

Designated-verifier re-encryption proof from the section 4.12.5 is suitable.

4. If the voter does not accept the proof, he publicly complains about the au-
thority. After that, the list is rolled back to the previous state e

(j−1)
1 , . . . , e

(j−1)
L

and the jth authority is ignored. The voter may complain against at most
N − t− 1 authorities.

The voter publicly announces the position i of his desired vote in the final
list e(N).

Counting stage. Each voter has already chosen his vote from the final list
produced for him by the authorities. His vote is encrypted in the same way as
in the 1-out-of-L voting in CGS scheme. Hence, the result of the election can
be computed in the same way as in the CGS scheme (see section 5.3.3) – the
encrypted votes are multiplied to obtain the encrypted sum of the votes, the
authorities jointly decrypt the sum of the votes and publish the proof of correct
decryption.

Achieved Properties

If the El-Gamal cryptosystem is secure, then this scheme provides eli-
gibility, universal verifiability, computational privacy, robustness and receipt-
freeness.

Eligibility. Eligibility is achieved, as the voter cannot cast invalid vote,
he votes at most once and he votes how he wishes (he can trace the permutation
of the encrypted votes). Only one problem arises, when one of the authorities
coerces. It can force the voter not to complain against its wrong proof of the
permutation. Therefore, the voter will lose his track and he will vote randomly.
For the coercer, random vote can be better than the almost sure vote for his
enemy.

Privacy, robustness. The encrypted vote cannot be decrypted by an out-
sider or by a group consisting of at most t authorities. Given a list of encrypted
votes and a shuffled list, it is infeasible to find out the correct permutation.
Voter can skip at most N − t − 1 shufflings, so at least t + 1 shufflings were
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performed correctly. The colluding set of at most t authorities cannot find out
the reordering of the list.

Universal Verifiability. Any observer can check whether the authority
Aj shuffled the list correctly. This way, any observer can verify whether the
last list e(N) is the list of the encryptions of all possible votes. Any observer
can compute a product of all encrypted votes selected by the voters, and any
observer can verify whether the final tally has been correctly decrypted by the
authorities.

Receipt-freeness. Assume that the coercer or vote-buyer does not col-
lude with the authorities. Voter can interact only at two points: he can revert
shuffling of at most N − t− 1 authorities, and he points at the encrypted vote
of his choice. From each authority he receives permutation together with the
proof of its correctness. Untappable channel guarantees that no one is able to
intercept this message. Thus, the voter can substitute received data with his
own permutation, and due to the no transferability of the designated-verifier
proof, he can construct a proof of its correctness as well. This way he can
deceive the possible coercer.

If the coercer colludes with some of the authorities (at most with t of them),
he will know the permutations they made. Therefore, the voter cannot lie about
their permutations. If he knows the colluding authorities, he will lie about the
permutation of reliable authority. Otherwise he selects one authority randomly
and lies for its permutation. Apparently, receipt-freeness holds as long as the
voter knows at least one authority not colluding with the coercer. Coercer can
only force the voter to vote randomly.

Communication Complexity. Per each voter, in the bulletin board
should be stored N lists each containing L items (2NL group elements), NL
1-out-of-L re-encryption proofs (NL(2L + 1) group elements), the voter’s com-
plaints and the index i of the voter’s vote in the final list. Overall, O(NL2)
group elements have to be transferred and stored in the bulletin board.

The voter receives N permutations and NL designated-verifier re-encryption
proofs through the untappable channel (NL log2 L bits and 4NL group ele-
ments).

Extensions

K-out-of-L voting. Simply, voter points at K votes from the final list.

1-L-K voting. Similarly to CGS scheme (see section ), ith element from
the rth set is represented as G(rn+i)M . Authorities shuffles two lists: first stands
for selecting a set {1, GnM , G2nM , . . . G(L−1)nM}; the second for selecting K
possibilities G, GM , G2M , . . . , GnM . Finally, the voter points at K elements
from the second list and to the one element B from the first list. In order to
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get the proper votes, each of the K elements selected from the second list is
multiplied with the B.
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6 Implementation of the Untappable Channel – De-
niable Encryption

Existence of the untappable channel is sometimes assumed between the voter
and the authority. The sent messages cannot be intercepted by anyone, thus
nothing is revealed to public and the voter may claim he has sent or received
any message he wants without being found lying.

Untappable channel can be realized by providing multiple channels between
the sender and the receiver under the assumption that the coercer cannot tap
on all channels simultaneously. The sender sends the message through one of
the channels randomly selected. If the coercer can tap merely on a few channels,
he can intercept the message only with small probability.

If this approach is not applicable, we have to assume that tapping on the
channel between the voter and the authority is likely. Nevertheless, intercepting
the communication between the voter and the authority should be useless for the
coercer; the voter should be able to mislead him by interpreting the intercepted
communication in the coercer’s desired way. The coercer should not obtain any
information about the transmitted message, except for its length.

Standard cryptographic implementations of the secure channel are not suit-
able. If the adversary intercepts the transmission of the encrypted message
and later forces the sender to reveal the secret keys and the random choices
generated during the encryption, the cleartext is exposed.

Using traditional encryption methods the sender is bounded to the cleart-
ext. For an intercepted ciphertext, the sender cannot generate fake secret keys
and fake random choices that will persuade the adversary that the given cipher-
text corresponds to the different cleartext. For instance, ElGamal encryption
(x, y) = (gk, hkm) of the message m can be opened by revealing the random
choice k. The sender is not able to generate any k′ opening the ciphertext as
the encryption of a different message m′.

This may seem rather confusing – if the ciphertext c can be interpreted as the
encryption of the message m as well as the encryption of the message m′, how
can the receiver distinguish between these cases and decrypt the message in the
sender’s intentioned way? The receiver has to possess some secret information
unavailable to anyone (maybe except for the sender). With this trapdoor, he is
able to decrypt the message correctly. Without it, the coercer cannot deduce
whether the given interpretation of the ciphertext is correct.

An encryption scheme allowing the sender generating his fake random choices
and his fake secret keys that will make the ciphertext looks like the encryption of
a different cleartext is called sender-deniable encryption. An encryption scheme
satisfying analogous requirements for the receiver is called receiver-deniable en-
cryption. The concept of deniable encryption was introduced in [CDNO].

One-time pad is an example of the deniable encryption. The sender and the
receiver shares a secret key s. A message m is encrypted to c = s⊕m. When
an adversary attacks the sender (receiver), the sender (receiver) may claim to
share a key s′ = c⊕m′ instead of s to convinced him of sending (receiving) the
message m′. However, the key s may be used only once.
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We will focus on the sender-deniable encryption, as the receiver-deniable
encryption can be constructed from the sender-deniable encryption. Let the
sender S wants to transmit a message m of the length l to the receiver R. S
and R execute the following protocol:

1. R generates a random message r of the length l

2. R uses sender-deniable encryption to transmit the message r to S

3. S sends c = m⊕ r through the public channel to R

4. R extracts the message m as m = c⊕ r

When the receiver is under attack, he may claim to send different message
r and thereby receiving a different message m.

6.1 Deniable Encryption Based on Quadratic Residues

We propose the following sender-deniable public-key encryption scheme.
The generalization of this scheme and more constructions of the sender-deniable
encryption schemes (from [CDNO]) can be found in the next section 6.2. The
sender encrypts the message using the public-key of the receiver and he can
later fake his random choices. The message is encrypted per bits.

The receiver has RSA modulus n = pq, where p, q are large prime numbers.
n is his public key, and p, q are kept secret. The sender has no public or secret
key.

Some basic facts about the quadratic residues and pseudo-squares can be
found in the section 4.5. The set of quadratic residues and pseudo-squares will
be denoted by Jn.

Encryption. A sender transmits one bit to the receiver as follows (k is
security parameter):
• If the sender wants to transmit 1, he sends k random quadratic residues:

he chooses xi ∈R Z∗
n, i = 1 . . . k at random and sends yi = x2

i mod n to
the receiver.

• If the sender wants to transmit 0, he sends k random integers yi ∈ Jn,
i = 1 . . . k: he selects yi ∈R Zn and checks whether

(yi
n

)
= 1.

Decryption. The receiver decrypts the message as follows:

• If all k received yi are quadratic residues, he decodes the message as a 1.

• If at least one of the k received yi is not a quadratic residue, he decodes
the message as a 0.

As only the receiver can distinguish between the quadratic residues and
quadratic non-residues, only he can decrypt the message.

If the sender transmits a 1, then all yi are quadratic residues and the receiver
decodes the message correctly. If the transmitted message is 0, there is a (small)
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probability that all k randomly selected yi are quadratic residues. Consequently,
the receiver will decrypt the message incorrectly as a 1. The probability that
all k randomly selected yi ∈ Jn are quadratic residues is (1/2)k, which can be
considered negligible.

The sender may interpret the sent ciphertext to the adversary in the follow-
ing ways:

• If the sent bit was 1, he can open the ciphertext as a 1 by revealing the
square roots xi, or as a 0 by claiming that all yi has been chosen randomly.

• If the sent bit is 0, he can open the ciphertext only as a 0.

As the adversary cannot distinguish between the quadratic residues and non-
residues, it has to accept the sender’s claim that the sent yi has been chosen
randomly, even if they were chosen from the quadratic residues.

The sender cannot cheat if the transmitted bit is 0. We can overcome this
problem by extending the encryption scheme:

1. The sender picks a random bitstring s of the length l:

• In order to transmit 0, he chooses s with even number of 1’s

• In order to transmit 1, he chooses s with odd number of 1’s

2. The sender transmits s per bits in the manner described above.

So, the number of transmitted elements grows from k to lk. If the receiver
receives s with odd number of 1’s, he decodes it as a 1. Otherwise, he decodes
the message as a 0.

When the sender is under attack, he may declare one 1 from the bitstring s
to be a 0. This way, the parity of the number of 1’s in the s has changed and
the bit encoded in the s is inverted. Cheating is impossible only in the case
when the s does not contain 1 (s = 0l).

6.2 The Generalized Parity Scheme

The idea presented in the previous section is not restricted to the use of
quadratic residues and can be generalized. In fact, this method can be applied
to any subset S ⊂ X of the set X with the following properties:

1. S is not too large: |S| ≤ |X|
2 .

2. Given x ∈ X and a secret (trapdoor) d, it is easy to determine whether
x ∈ S.

3. It is easy to generate a random element x ∈ S, even without the secret d.

4. Without d, it is infeasible to distinguish between the values uniformly
chosen from the S and the values uniformly chosen from the X.
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Let’s denote the number of elements in the S as m = |S| and the number of
elements in the X as n = |X|. In the previous encryption scheme, X is the set
of all pseudo-squares and quadratic residues, the set S is the set of all quadratic
residues modulo n and the trapdoor d is the factorization of the modulus n.
The encryption, decryption and the faking algorithms look as follows:

Encryption. Again, to send a bit 1 (0) a random string of bits s = s1 · · · sl

such that the number of 1’s in s is odd (even) is selected. Further, for i =
1, 2, . . . , l si is encrypted to r random elements from the S if si = 1, or to
r random elements from the X if si = 0. The probability of the incorrect
decryption of the si is

(
m
n

)r and should be at most 1
2k , so we choose r as the

smallest integer satisfying
(

m
n

)r ≤ 1
2k .

Decryption. Firstly, the string of bits s is decrypted per bits. Exploiting
the secret d, it is easy to decide whether all of the r elements making up the
encryption of the si are elements of the set S. In that case, si is decrypted as
a 1, otherwise as a 0. The sent bit is obtained from the parity of the number
of 1’s among the si.

The probability of the incorrect decryption is less than l
2k ( 1

2k is the upper-
bound of the probability that the si is decrypted erroneously).

Faking Algorithm. If s = 0l, faking is impossible. Otherwise, the sender
picks up one si = 1 and claims that si = 0 (instead of revealing how the
encryption of the si – r elements from the S – has been created, he claims that
these r elements has been chosen randomly from the X).

R. Canetti, C. Dwork, M. Naor and R. Ostrovsky in [CDNO] proposed the
following constructions of the sets S, X described above. Both constructions
assume the existence of one-way trapdoor one-to-one function f : W → W
(computing f−1 is feasible only with the secret d) and a predicate B : W →
{0, 1} satisfying

|{w ∈W | B(w) = 1}| = |W |
2

Computing B(w) is easy for all w ∈W .

Construction A. The sets X, S are defined as:

X = W

S = {w ∈W | B(f−1(w)) = 1}

It is easy to see that |S| = |X|
2 . A random element y ∈ S can be obtained

by choosing a random x ∈ W such that B(x) = 1 and computing y = f(x).
With the trapdoor d, it is easy to determine whether the given y ∈ X is also
a member of S; just check whether B(f−1(y)) = 1. Without the trapdoor d,
given y1, . . . , yk ∈ X the coercer cannot determine whether these values have
been chosen randomly from the S or randomly from the X: The coercer cannot
compute f−1; therefore he has no information about the values xi = f−1(yi)
and no information about B(xi).
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Construction B. Another technique (which turns to be more efficient)
for obtaining the set S is as follows.

X = {wb| w ∈W, b = b1 . . . bk; bi ∈ {0, 1}; i = 1 . . . k}

S = {wb| wb ∈ X;B(f−i(w)) = bi; i = 1 . . . k}

Notice that for any w ∈W there exists exactly one b such that wb ∈ S; and
this b = b1 . . . bk where bi = B(f−i(w)). Hence

|S| = |X|
2k

An element wb ∈ S can be randomly generated by choosing x ∈ W at
random and setting w = fk(x), bi = B(fk−i(x)).

Determining whether the given wb ∈ X is also a member of S is easy with
the knowledge of the trapdoor d: just compute f−1(w), f−2(w), . . . , f−k(w) and
check whether B(f−i(w)) = bi for i = 1 . . . k.

Without the trapdoor d, given wb ∈ X the coercer cannot determine whether
this value has been chosen randomly from the S or randomly from the X:
Since the coercer cannot compute f−1, he has no information about the val-
ues xi = f−i(w), no information about B(xi) and therefore he cannot decide
whether bi = B(xi) for all i.

Communication Complexity. In order to transmit 1 bit through untap-
pable channel, the construction A transfers kl elements of the W . Conversely,
the construction B transmits only l elements of the W and kl bits.
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7 The Proposed Scheme

The HS-scheme seems to be efficient and practicable. However, the amount
of work done by the voter and the number of bits sent through the untappable
channel are quite high. The voter needs to check LN proofs sent to him through
the untappable channel in order to keep track of the permutation of the votes.
We would prefer the voter’s computation and the amount of data transmitted
through the untappable channel to be independent on L.

7.1 Requirements for the Voting Protocol

Similar to the HS-scheme, the votes will be encrypted by the robust thresh-
old public-key cryptosystem with the homomorphic property. The HS-scheme
required this public-key cryptosystem to support random re-encryptability, 1-
out-of-L re-encryption proof and designated-verifier re-encryption proof. Our
scheme, in addition, requires the existence of 0-preserving re-encryption with
the 0-preserving re-encryption proof (see section 7.1.1) and 1-out-L 0-preserving
re-encryption proof (see section 7.1.2).

The modified ElGamal cryptosystem E(m) = (gk, hkGm) (section 5.3.3)
satisfies all mentioned requirements. Its only disadvantage is relatively small
message space caused by inefficient decrypting algorithm (problem of computing
m from Gm).

Without loss of generality, assume that there exists a standard encryption
e0 = E0(m) of the message m. In the modified ElGamal cryptosystem put
E0(m) = (1, Gm).

7.1.1 0-preserving re-encryption

0-preserving re-encryption is an algorithm that on the input e = E(m)
outputs e′ = E(m′), where m′ = 0 if and only if m = 0, otherwise m′ 6= 0 is a
random message (uniformly distributed).

In addition, a proof that e′ is a 0-preserving re-encryption of e, not revealing
the relation between the messages m and m′, is required.

In the modified ElGamal cryptosystem (E(m) = (gk, hkGm)), the 0-preserving
re-encryption looks as follows: Given E(m) = (x, y), m ∈ Z∗

p−1, compute the
0-preserving re-encryption E(m′) = (x′, y′) as

(x′, y′) = (xr, yr)

where r is random r ∈R Z∗
p−1.

If (x, y) = (gk, hkGm), then

(x′, y′) = (x, y)r = (gk, hkGm)r = (gkr, hkrGmr) = E(mr)

and m′ = mr.
To prove that (x′, y′) is the 0-preserving re-encryption of the (x, y), it is

enough to show that
logx x′ = logy y′

The non-interactive proof from the section 4.12.2 is suitable. The value r = m′

m
should be kept secret.
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7.1.2 1-out-of-L 0-Preserving Re-Encryption Proof

The prover wants to prove that for the encrypted message e = E(m) =
(x, y) there exists a 0-preserving re-encryption in the L encrypted messages
e1 = (x1, y1), . . . , eL = (xL, yL).

Assume that the (xt, yt) is the 0-preserving re-encryption of (x, y) and that
the re-encryption randomness is r, e.g. (xt, yt) = (xr, yr).

Just consider the values (x1, y1), . . . , (xL, yL) to be the encrypted messages
in the ElGamal cryptosystem (p, x, y) (instead of the original (p, g, h)). In this
cryptosystem, the (xt, yt) = (xr, yr) is the re-encryption of (1, 1). Therefore, it
is enough to prove that in the elements (x1, y1), . . . , (xL, yL) is the re-encryption
of (1, 1). The non-interactive proof from the section 4.12.3 is suitable.

7.1.3 1-out-of-L Encryption Proof

Given an encryption e = E(m) of the message m, the authorities want to
verify whether m is valid without revealing any other information about the m.
The message m is valid if it is in the set of valid messages {m1,m2, . . . mL}. Note
that the authorities can decrypt any message, but decrypting the m straight-
forwardly is not desired, as it reveals the m. We assume that at least t + 1
authorities will follow the protocol described bellow.

Assume that the e0
1, . . . , e

0
L are standard encryptions of the valid messages

m1, . . . ,mL. In the modified ElGamal cryptosystem, e0
i = (1, Gmi).

1. The authorities compute the initial list e
(0)
1 , . . . , e

(0)
L by setting

e
(0)
i =

e

e0
i

=
(gk, hkGm)
(1, Gmi)

= (gk, hkGm−mi)

Notice that e
(0)
i is the encryption of 0 if and only if mi = m. The message

m is valid if and only if the initial list e
(0)
1 , . . . , e

(0)
L contains the encryption

of 0.

2. The authorities shuffles the initial list e
(0)
1 , . . . , e

(0)
L to produce the final

list e
(N)
1 , . . . , e

(N)
L in the following manner. One by one, the authority Aj ,

j = 1 . . . N should do the following:

Aj picks the list e
(j−1)
1 , . . . , e

(j−1)
L on input and outputs the list e

(j)
1 , . . . , e

(j)
L .

If the Aj fails in some way, then the Aj is ignored and it is put e(j) = e(j−1).
Aj generates the output list as follows:

(a) Aj selects a random permutation π : {1, . . . , L} → {1, . . . , L} and
random numbers r1, . . . , rL. Aj keeps π, r1, . . . , rL secret.

(b) The π(i)-th item in the output list is the 0-preserving re-encryption
of the i-th item from the input list using the randomness ri.

(c) For each item e
(j−1)
i from the input list, the Aj proves that there

is a 0-preserving re-encryption in the output list e
(j)
1 , . . . , e

(j)
L using

1-out-of-L 0-preserving re-encryption from the section 7.1.2.
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3. The authorities decrypt each element from the final list e
(N)
1 , . . . , e

(N)
L .

The e = E(m) encrypts valid message if and only if one of the decrypted
values is 0.

The initial list contains the encryption of 0 if and only if the message m
encrypted in e = E(m) is valid. The authority Aj ’s output list contains the
encryption of 0 if and only if the Aj ’s input list contains the encryption of 0,
since each item from the output list is the 0-preserving re-encryption of one
item of the input list. Therefore, the encryption e of the message m is valid if
and only if the final list contains the encryption of 0.

The decrypted values tells nothing about the message m (except for its
validity). The non-zero decrypted values look random, and their relations to
the m are hidden.

In the last step, it is not necessary to actually decrypt the elements from
the final list – the zero-test is sufficient. In the modified ElGamal cryptosys-
tem, the authorities test whether (gk, hkGM ) is the encryption of 0 as follows:
they cooperate in obtaining GM from (gk, hkGM ) and test whether GM ?= 1
(computing M from GM is infeasible).

7.2 Introducing the Scheme

Scheme overview. In the proposed scheme, the voter shares his vote using
(t+1, N) secret sharing among the authorities. He sends the shares through the
untappable channel. The authority publishes the re-encryption of the received
share and sends to the voter designated-verifier proof of its correction. The
voter may object to it. Those t + 1 published re-encryptions against which the
voter does not object are combined to produce the encrypted vote. Further,
the authorities cooperate in ensuring its validity. All valid votes are multiplied
and the authorities decrypt the sum of the votes.

In the 1-out-of-L voting, the voter Vi chooses his vote vi from the set
{1,M, M2, . . . ML−1} (M is the number of eligible voters). However, in the
yes/no voting it suffices to encode the votes to {−1, 1}.

Initialization stage. Authorities set up the robust threshold public-key
cryptosystem satisfying the mentioned requirements (modified ElGamal for in-
stance).

Voting Stage. The voter Vi shares his vote vi among the authorities using
Shamir (t + 1, N) secret sharing scheme. For the ease of understanding, the
communication between the voter and authorities is depicted in the figure 7.

1. The voter Vi generates a random polynomial f of degree t satisfying
f(0) = vi:

f(x) = vi + a1x + · · ·+ atx
t

The jth authority’s share is sj = f(j). Recall that the vote vi can be
obtained from any set A of t + 1 shares by computing

vi =
∑
j∈A

sjλj
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Bulletin Board

A1 A2 . . . AN

Voter sj = f(j)

untappable channels

6

s1

6

s2

6

sN

ej = E(sj)

6

e1

6

e2

6

eN

?

proof

?

proof

?

proof

e = E(v)

Figure 7: Communication in the scheme

where λj is the Lagrange coefficient.

2. The voter sends sj through the untappable channel to the jth authority
Aj (j = 1, . . . , N).

3. The authority Aj computes the standard encryption e0
j = E0(sj), re-

encrypts e0
j to ej and writes ej to the bulletin board. Aj keeps sj , e0

j

secret. Besides, Aj convinces the voter that ej is the encryption of sj .
More precisely, Aj transmits a designated-verifier proof that ej is the
re-encryption of e0

j through the untappable channel to the voter.

4. Vi checks the received (for him designated) proofs. He may publicly com-
plain about the incorrect ones; he can do so at most N − t− 1 times. In
addition, Vi may point out the t + 1 authorities in which he trust.

5. Let A be the set of t + 1 authorities which the voter found trustworthy
and against which he did not complain. The encrypted shares of these
authorities are combined:

e =
∏
j∈A

e
λj

j =
∏
j∈A

E(sj)λj =
∏
j∈A

E(sjλj) = E(
∑
j∈A

sjλj) = E(vi)

We see that the obtained e is the encryption of the vote vi.

6. Furthermore, authorities verify the validity of e by executing the 1-out-
L-encryption proof from the previous section 7.1.3. This proof is written
to the bulletin board.
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Counting stage. All valid votes e are multiplied, and the authorities
jointly decrypt the sum of the votes.

Security Properties

Eligibility. If the voter Vi is honest and the ej published by t+1 authori-
ties he has selected as trustable are really the encryptions of the corresponding
shares sj , then the e constructed in the step 5 is obviously the encryption of
the voter’s vote vi and the voter’s vote is counted properly.

The dishonest voter Vi might either share an invalid vote, or distribute
invalid shares (something that is not produced by secret sharing at all), or he
might select the authority Aj as trustable despite the fact that the designated-
verifier proof provided by Aj was incorrect. At any rate, the probability that
the reconstructed vote e is valid is negligible. The invalidity of the e will be
detected in the 1-out-of-L encryption proof and this invalid vote will not be
counted.

Privacy. The voter’s intention can be reconstructed from the t+1 shares.
As the shares are sent through the untappable channel, they cannot be inter-
cepted by anyone. The authorities publish the encryptions of their shares, so
nothing can be deduced about them as far as the underlying cryptosystem is
secure. The 1-out-of-L encryption proof verifying the validity of the vote also
reveals no other information about it.

Verifiability. The scheme is universally verifiable. Anyone can read
the encrypted shares ej , the set A of t + 1 authorities denoted by the voter as
reliable, and he can construct the encrypted vote e. Furthermore, he can verify
its validity by verifying the 1-out-of-L encryption proof. He can multiply all
valid encrypted votes to obtain the encryption of the sum of the votes. Since
the decryption is verifiable, he can also check whether the sum of the votes has
been correctly decrypted.

Receipt-Freeness. This scheme is receipt-free if the voter knows the
coercing authorities.

The voter can easily adjust the shares and the designated-verifier proofs
according to his needs. If some authorities (at most t) collaborate with the
coercer, the coercer gets to know their shares. If the voter knows which author-
ities are dishonest, he can still adjust the shares of the remaining N − t honest
authorities to fit the coercer’s vote.

If the voter does not know the fraudulent authorities, he has to choose N−t
authorities randomly and he lies about their shares. The probability that he
will guess the honest authorities is 1

(N
t ) , which is rather small. In the HS-scheme

the voter has to guess only one honest authority, not all of them. The scheme
has to be modified in order to satisfy this requirement. More precisely, the used
secret sharing scheme has to be replaced with something else. In the (t + 1, N)
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secret sharing scheme, the t + 1 shares commits the voter to the remaining
N − t− 1 shares. The voter can adjust only t + 1 shares, since they determine
the rest N − t− 1 shares.

If the coercer computes sj for the voter and the voter has no idea which t
authorities are coercing, he can still do this simple (but risky) trick. He chooses
t+1 “reliable” authorities, and from them “the most reliable one” (randomly, if
he cannot distinguish between the honest and dishonest ones). Each authority
Aj (except for “the most reliable one”) will get the coercer’s share sj . He adjust
the share of “the most reliable” authority such that the interpolation of the t+1
shares of “reliable” authorities gives his vote vi. Of course, this distribution of
the shares is incorrect, but as far as the “reliable” authorities sent back to him
the correct designated verifier proof, his vote is counted properly. In the case
that one “reliable” authority encrypts its share wrongly and sends to the voter
wrong proof, the voter is in trouble. Either he will cast an invalid vote (by
denoting the “reliable” authorities as trustable), or he will cast the coercer’s
vote (by denoting the other set not containing “the most reliable authority” as
trustable).

7.2.1 The Modification Enhancing Incoercibility

Voting stage. For the ease of understanding, the communication in the
voting stage is depicted in the figure 8.

1. The authority Aj chooses a random message sj and encrypts it to ej =
E(sj). Aj keeps the sj secret and writes ej to the bulletin board. Fur-
thermore, Aj sends sj as well as a designated-verifier proof that ej is the
re-encryption of the e0

j = E0(sj) to the voter through the untappable
channel.

2. The voter Vi receives the sj , and checks the designated-verifier proofs.
He chooses at least t + 1 authorities whose designated-verifier proofs are
correct and in which he trusts. Let A be the set of the selected authorities.
The voter computes ev = E(vi−

∑
j∈A sj) and writes A, ev to the bulletin

board.

3. The encrypted vote can be obtained by computing

e = ev

∏
j∈A

ej = E(vi −
∑
j∈A

sj)
∏
j∈A

E(sj) = E(vi −
∑
j∈A

sj +
∑
j∈A

sj) = E(vi)

4. The authorities verify the validity of e by executing the 1-out-of-L en-
cryption proof.

Security Properties

Eligibility. The vote of the honest voter will always be properly counted.
A dishonest voter might cast an invalid ev. Consequently, the constructed e
will be invalid with high probability, and this invalid vote will be rejected.
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Bulletin board

A1 A2 . . . AN

Voter

? ? ?

s1 s2 sN

6 6 6

e1 e2 eN

6

ev

untappable channels

ev = E(v −
∑

sj)

ej = E(sj)

e = E(v)

Figure 8: Communication in the voting stage

Privacy. Privacy is protected by the security of the underlying cryptosys-
tem. The 1-out-of-L encryption proof reveals nothing about the voter’s vote.

Incoercibility. The voter can adjust sj according his needs. The values
sj , j /∈ A are not important. The published ev commits him to the value
z = vi −

∑
j∈A sj . Let the coercer’s vote be vc. The voter chooses one k ∈ A

and claims sk to be sk = vi−vc+sj . He leaves the others sj , j 6= k unchanged.
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8 Conclusion

We have summarized the existing voting schemes and their properties. We
also proposed an efficient receipt-free voting scheme. This way, the goals of our
work have been achieved.

The presented voting schemes have different security properties. The HS-
scheme (section 5.4) is quite efficient and achieves privacy, verifiability and
incoercibility. Untappable channel is used in the communication between the
voter and the authority to prevent coercing. The amount of data sent through
the untappable channel depends on the number of possible choices/votes (L).

However, known implementation of the untappable channel (section 6) is
very inefficient (e.g. sending 1 bit through the untappable channel means send-
ing 105 bits through the public channel). Therefore, we tried to cut down the
amount of data that has to be sent through the untappable channel.

We succeeded in designing a scheme having the same security properties as
the HS-scheme, but the amount of data sent through the untappable channel
is reduced and does not depend on L (number of possible choices/votes).

The untappable channel (or deniable encryption) is the only way how to
prevent coercing. Hence, in the scheme achieving incoercibility some informa-
tion simply has to be sent through the untappable channel, and the question is
how much it can be reduced.

Our scheme does not remove the dependence on L (number of possible
choices/votes) completely, just from the voter’s point of view. The computation
done by the voter does not depend on L. Nevertheless, the verification of the
validity of the vote performed by the authorities still depends on L.

Further work can be done in designing more efficient protocol ensuring the
validity of the vote. The protocol can involve the authorities as well as the voter,
should preserve incoercibility and its communication/computation complexity
should be independent on L.

Our research has been focused on the schemes exploiting homomorphic prop-
erty of the encryption method. Other kinds of schemes – schemes based on
anonymous channel and blind signatures – can still be enhanced in security
(incoercibility, making an objection, universal verifiability, etc.)

Bringing electronic voting into practice means to solve a lot of technical
problems which have not been considered in this paper, especially authentica-
tion of the voter and secure platform problem. Current generation of personal
computers is not sufficiently secure to act as the voting agent. Electronic vot-
ing is not like e-commerce, where the customer obtains a receipt confirming the
transaction, or the parties involved in the transaction are recorded.
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