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Marek Kumpošt (FI MU) Context Information and User Profiling November 15, 2010 3 / 32



Introduction

Introduction

Customizable services
• Operate with “user profiles”
• Reflects user’s previous behaviour (based on their context information)

Context information
• Descriptive type of information
• By-product of on-line activity, associated with an individual
• May reveal some private information

User behaviour model (context model)
• User profiling based on previous behaviour (context)

Representative behavioral patterns
• Identification of groups with the same behavioral characteristics
• Try to identify user(s) by using their behavioral patterns only

Impact on users’ privacy (ISPs have huge traffic databases available)
Techniques for finding behavioral characteristics

• Input data restriction and optimization
• Processing data (appropriate input information; data mining

techniques)
• Results evaluation → impacts on users’ privacy
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Marek Kumpošt (FI MU) Context Information and User Profiling November 15, 2010 4 / 32



Introduction

Introduction

Customizable services
• Operate with “user profiles”
• Reflects user’s previous behaviour (based on their context information)

Context information
• Descriptive type of information
• By-product of on-line activity, associated with an individual
• May reveal some private information

User behaviour model (context model)
• User profiling based on previous behaviour (context)

Representative behavioral patterns
• Identification of groups with the same behavioral characteristics
• Try to identify user(s) by using their behavioral patterns only

Impact on users’ privacy (ISPs have huge traffic databases available)
Techniques for finding behavioral characteristics

• Input data restriction and optimization
• Processing data (appropriate input information; data mining

techniques)
• Results evaluation → impacts on users’ privacy

Marek Kumpošt (FI MU) Context Information and User Profiling November 15, 2010 4 / 32



Introduction

Introduction

Customizable services
• Operate with “user profiles”
• Reflects user’s previous behaviour (based on their context information)

Context information
• Descriptive type of information
• By-product of on-line activity, associated with an individual
• May reveal some private information

User behaviour model (context model)
• User profiling based on previous behaviour (context)

Representative behavioral patterns
• Identification of groups with the same behavioral characteristics
• Try to identify user(s) by using their behavioral patterns only

Impact on users’ privacy (ISPs have huge traffic databases available)
Techniques for finding behavioral characteristics

• Input data restriction and optimization
• Processing data (appropriate input information; data mining

techniques)
• Results evaluation → impacts on users’ privacy
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State-of-the-art

State-of-the-art

Context information models
• Set theory – Context T is described by a set of vectors
• Directed graph – Something like UML, very comprehensive
• First-order logic – Context(<ContextType>,<Subj>,<Rel>,<Obj>)

User behaviour models
• Global mixture model – General model is optimized individually
• Maximum entropy model – Set of constraints from different sources

Privacy models
• Freiburg privacy diamond (FPD) – Mobile environment
• PATS – Inspired by the FPD but considers all available context

information and inner relations

Models are mainly web oriented
• Web users’ navigational characteristics
• Input data – web access logs
• Consider some other type of traffic logs (e.g. SMTP, ftp, ssh, . . . )
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State-of-the-art PATS (Privacy Across The Street) model

PATS (Privacy Across The Street) model

Graph represents actual knowledge about a system (context
information)

The goal is to involve all available context information

Context information is represented as vertices

Relations between vertices (edges) – weighted with probabilities

The goal – best (most likely) connection between vertices
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State-of-the-art PATS (Privacy Across The Street) model

Graph model – an example
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State-of-the-art AOL dataset

Introduction and the story

AOL released a list of 21 million web search queries on 1. August 06

Online version http://www.aolsearchdatabase.com
Focused on 658 000 subscribers

Search queries during a three-month period

UserIDs were anonymized

Released on AOL Research site – for academic purposes
Examples of queries:

• find family by social security number
• how to secretly poison your ex
• learning to be single

Allows for user profiling – e.g. AOL user 311045 possibly owns a
Scion XB automobile in need of new brake pads. User is possibly a
Florida resident. . .

User 710794 is possibly an overweight golfer, owner of a 1986 Porsche
944 and 1998 Cadillac SLS, and a fan of University of Tennessee
Basketball team.
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State-of-the-art AOL dataset

Identification of a real person

Full identification of a real individual
User No. 4417749 (Thelma Arnold) was identified

Examples of her queries:

60 single men

dog that urinates on everything

landscapers in Lilburn, Ga

dogs-related queries

She agreed to discuss her searches with a re-
porter and was shocked to hear that AOL had
saved and published her searches.

How many times did you search your name with Google? :-)
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Data for profiling

Input data – Netflow MU (traffic log)

Records of communication in MU network (NetFlow)
• around 180 million records/day
• source/destination IP; protocol; ports; time; transferred bytes . . .
• current state – over 1 000 000 000 records (one year; many records

were dropped)
• MySQL – problems with speed. . .
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Data for profiling

Input data – cont.

Input restriction – selected part of a network; selected ports (Faculty
of informatics and college; port 80, 22)

• find most frequently visited destination IPs
F best ratio between source and destination IPs?
F techniques that help to clear the data

• for every source IP find the number of hits to a particular destination

Output is the matrix source vs. destination IPs and hits
• we have vectors describing “behaviour” of source IPs
• input data for the clustering process
• matrix is very sparse :-(

Approaches to limit the number of context information and entities
• omit very frequently visited destinations
• omit commonly visited destinations
• omit very active source IPs
• restriction of IP addresses (src/dest) and port

Input data visualization
• to visually detect some characteristics
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Data for profiling

Visualization of input data

To get an initial view. . .
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Data for profiling

Visualization of input data

Restrict the number of destination IPs. . .
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Data for profiling
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Marek Kumpošt (FI MU) Context Information and User Profiling November 15, 2010 15 / 32



Ways to filter data

Ways to filter input data
How to find relevant source and destination IPs?

We need more dense matrix for the clustering process

Destination IPs restrictions
• accessed only once within a given period
• accessed by at least a half of sources
• different levels of entropies – number of unique sources
• TF-IDF (text mining field), PrefixSpan (sequence based mining)

Usage-based vs. frequency-based approach
• usage-based – to optimize destinations
• frequency-based – to optimize sources

Visualization of the matrix of vectors
• scatter plot (usage-based)
• balloon plot (frequency-based)

Source IPs restrictions
• only “active” sources may help in clustering (profiling)
• behaviour of passive sources is difficult to predict
• differentiate between different levels of “activity”

Marek Kumpošt (FI MU) Context Information and User Profiling November 15, 2010 16 / 32



Ways to filter data Frequency histograms clustering

Frequency histograms clustering

Frequencies of source IPs activities
• levels of frequencies and number of accessed destinations
• 1 to 10 individually and then aggregations of tens
• most records fall into these individual categories

Helps to find different levels of activity

Helps to decrease the matrix dimensions

• process of clustering is partially automatic
F find histograms
F save vectors into arff file
F use R to perform clustering and cut clusters to sets

• Ward’s clustering method
F minimizes the ’information loss’ associated with each grouping
F strong tendency to split data in groups of roughly equal size
F no clusters with only one or a few elements
F output levels of activity are used as a restriction
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Ways to filter data Frequency histograms clustering

Histogram visualization and processing
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Ways to filter data Frequency histograms clustering

PrefixSpan

Sequence mining algorithm
Searching for frequent sequences of destinations
Sequences can contain gaps (how long?)
Destinations ordering – IP value
Input: sequences of destinations for each source
Output: frequenct sequences w.r.t prefixspan settings
Frequent sequences can be processed individually
. . . to find corresponding sources
Sources can be analyzed with more data
Problems with proxies and very active sources

./prefixspan -m 2 -M 5 <sequences.txt >output.txt
-m NUM: set minimum support
-M NUM: set minimum pattern length
-L NUM: set maximum pattern length
-a: print ALL patterns (default: print longest pattern)
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Similarity searching

Content

1 Introduction

2 State-of-the-art

3 Data for profiling

4 Ways to filter data

5 Similarity searching
Cosine similarity measure
Proposed improvements
Similarity measure evaluation
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Similarity searching Cosine similarity measure

Similarity computation – cosine similarity

Data from two time periods (e.g. months)

First dataset – apply some restrictions → 1st temp. table

Second dataset – apply the same restriction → 2nd temp. table

Different types of restrictions and their influence

IDF values based on the first table – highly dependent information

Synchronize temp. tables – vectors of the same dimensions (set of
destinations)

Cosine similarity measure (of two behavioural vectors A,B)

• cosim(ϕ) =
Pn

i=1 aibi√Pn
i=1 a2

i

√Pn
i=1 b2

i

• 1 – completely related; 0 – completely unrelated
• For every vector from the 1st table → list of candidates

F A : . . . , sim value(A,B)(B, dcomm), . . .
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Similarity searching Cosine similarity measure

An example

A 1(A,1); 1(B,1); 1(O,1); 0.164399(E,1)
B 1(A,1); 1(B,1); 1(O,1); 0.164399(E,1)
D 0.999635(M,1); 0.997976(D,2); 0.0270172(J,1)
E 0.999168(E,2); 0.124035(A,1); 0.124035(B,1); 0.124035(O,1)
J 1(J,1); 0.0905358(D,1)

A 1(A,1); 1(B,1); 1(O,1); 0.0763637(E,1)
B 1(A,1); 1(B,1); 1(O,1); 0.0763637(E,1)
D 0.999806(M,1); 0.998918(D,2); 0.0197195(J,1)
E 0.999818(E,2); 0.057345(A,1); 0.057345(B,1); 0.057345(O,1)
J 1(J,1); 0.0661965(D,1)

1 2 3 4 5 6 7 8 9
A 0 0 0 0 0 0 0 0 1853
B 0 0 0 0 0 0 0 0 297
D 0 0 37 0 0 0 1 0 0
E 0 0 0 0 32 0 0 0 4
J 0 0 0 0 0 0 17 0 0

1 2 3 4 5 6 7 8 9
A 0 0 0 0 0 0 0 0 1487
B 0 0 0 0 0 0 0 0 244
E 0 0 0 0 12 0 0 0 2
J 0 0 0 0 0 0 12 0 0
D 0 0 11 0 0 0 1 0 0
M 0 0 5 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0 3
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Similarity searching Proposed improvements

Sim. measure – proposed improvements

General idea – strengthen rare attributes
• Knowledge of a certain rare attribute vs. common attribute
• Same idea used later by Narayanan and Shmatikov

TF-IDF (Term Frequency - Inverse Document Frequency)
• IDF – how important a destination is to a set of source IPs
• weight(i , j) = tfi,j · log2(n/dfi ), if tfi,j ≥ 1
• Highly dependent on current structure of input data
• Additional context information for a given “environment”
• Vector of relevance (same size as behavioural vectors)
• Multiplied with all behavioural vectors (prior cosim)
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Similarity searching Proposed improvements

Sim. measure – proposed improvements

dcomm values – number of common attributes (destination IPs)
• ↗ num. of common destinations ⇒ ↗ similarity index
• Re-computed after the main similarity searching procedure
• HTTP traffic – average number of common attributes – 3.3
• d(A,B) = dcomm/dmax

• sim value(A,B) =
cos(A,B)+d(A,B)

2

Comparison with Narayanan and Shmatikov
• Robust De-anonymization of Large Sparse Datasets (IEEE, 2008)
• Knowledge of 3-8 shared attributes for re-identification
• Same approach for strengthening rare attributes
• More dense data (movie rating DB)
• Our experiments: SSH – 1.5; HTTPS – 6; HTTP – 3.3
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Similarity searching Proposed improvements

Sim. measure – proposed improvements

Figure: HTTP traffic – Training and testing sets (average number of visited
destination IP addresses)
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Similarity searching Similarity measure evaluation

Similarity measure – evaluation

Evaluation of our two proposed improvements (IDF and dcomm)

Different initial conditions and their impact

Two proposals for evaluation:
• Comparison with the “ideal” model

F We know the correct answer from the original data
F Distance between the correct answer and the output of the similarity

measure
F We can observe the influence of IDF values

• Evaluation based on three criteria
F “Correct” candidate is the first on the list of candidates
F “Correct” candidate is in the list of candidates (but not the first)
F “Correct” is not in the testing set

Evaluation of profiles’ persistence
• Always fresh profiles (e.g., neighboring months)
• Old profiles (e.g., created in January)
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Similarity searching Similarity measure evaluation

Similarity measure – comparison with ideal model

Normalize the set of similar IPs – sum equals 1

|1− sim index | – correct decision (we “know” which one is correct)

|0− sim index | – bad decision

Sum of these for every source IP – “amount of error”

A 1(A,1); 1(B,1); 1(O,1); 0.164399(E,1)
A 0.316015(A,1); 0.316015(B,1); 0.316015(O,1); 0.051953(E,1)
A 1(A,1); 0(B,1); 0(O,1); 0(E,1)
A 0.683985(A,1); 0.316015(B,1); 0.316015(O,1); 0.051953(E,1)

Error rate – 1.367968 (boundaries – 0 → 2)
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Similarity searching Similarity measure evaluation

The influence of the IDF values

Figure: Influence of the IDF – HTTP traffic.
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Evaluation based on the three criteria (HTTP)

restr. crit. IDF + d(A,B) IDF cos(A,B)
20 “Correct” – 1st place 20% 10% 14%
20 “Correct” – in the list 17% 27% 22%

...
...

...
...

...

Table: HTTP traffic – first and second criteria (shortened)

Number of common attributes for a 100% re-identification – 3.3

Third criteria (candidate not in the testing set) – 61.5%

Average distance from the first candidate (second crit.) – 0.12

IDF + d(A,B) move the correct candidates to the beginning in the list
of candidates
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Stability of user profiles

How long is a user profile “fresh”?

. . . and can be used for re-identification

Two experiments:
1 Training and testing sets are neighbouring months
2 First month (only) of a year used as a training set

Results (decrease caused by old profiles):
1 SSH traffic – 9.89 %
2 HTTPS traffic – 5.15 %
3 HTTP traffic – 13.36 %
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Stability of user profiles

Figure: Stability of profiles based on SSH traffic.
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Stability of user profiles

Figure: Stability of profiles based on HTTPS traffic.
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Stability of user profiles

Figure: Stability of profiles based on HTTP traffic.
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Conclusion

Conclusions and ideas for future research

Main contribution of the project
• PATS model for context information analysis
• Experiments towards re-identification with real data

F Two proposed improvements of the cosine similarity measure
F IDF and dcomm values

• Evaluation of the similarity searching procedure
F IDF and dcomm values provide better results
F Evaluation of the measure for SSH, HTTPS and HTTP protocols
F Overall re-identification rates – 58.61%, 19.67%, 19.33%

Ideas for the future research:
• Further evaluations; stability of user profiles
• Another approach of building behavioural vectors – progressively in time
• Different input data
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Conclusion

Questions?

Thanks for your attention!

LATEX
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